14 research outputs found

    Regulated and Non-Regulated Mycotoxin Detection in Cereal Matrices Using an Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UHPLC-HRMS) Method

    No full text
    Cereals represent a widely consumed food commodity that might be contaminated by mycotoxins, resulting not only in potential consumer health risks upon dietary exposure but also significant financial losses due to contaminated batch disposal. Thus, continuous improvement of the performance characteristics of methods to enable an effective monitoring of such contaminants in food supply is highly needed. In this study, an ultra-high-performance liquid chromatography coupled to a hybrid quadrupole orbitrap mass analyzer (UHPLC-q-Orbitrap MS) method was optimized and validated in wheat, maize and rye flour matrices. Nineteen analytes were monitored, including both regulated mycotoxins, e.g., ochratoxin A (OTA) or deoxynivalenol (DON), and non-regulated mycotoxins, such as ergot alkaloids (EAs), which are analytes that are expected to be regulated soon in the EU. Low limits of quantification (LOQ) at the part per trillion level were achieved as well as wide linear ranges (four orders of magnitude) and recovery rates within the 68–104% range. Overall, the developed method attained fit-for-purpose results and it highlights the applicability of high-resolution mass spectrometry (HRMS) detection in mycotoxin food analysis

    Regulated and Non-Regulated Mycotoxin Detection in Cereal Matrices Using an Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UHPLC-HRMS) Method

    No full text
    Cereals represent a widely consumed food commodity that might be contaminated by mycotoxins, resulting not only in potential consumer health risks upon dietary exposure but also significant financial losses due to contaminated batch disposal. Thus, continuous improvement of the performance characteristics of methods to enable an effective monitoring of such contaminants in food supply is highly needed. In this study, an ultra-high-performance liquid chromatography coupled to a hybrid quadrupole orbitrap mass analyzer (UHPLC-q-Orbitrap MS) method was optimized and validated in wheat, maize and rye flour matrices. Nineteen analytes were monitored, including both regulated mycotoxins, e.g., ochratoxin A (OTA) or deoxynivalenol (DON), and non-regulated mycotoxins, such as ergot alkaloids (EAs), which are analytes that are expected to be regulated soon in the EU. Low limits of quantification (LOQ) at the part per trillion level were achieved as well as wide linear ranges (four orders of magnitude) and recovery rates within the 68–104% range. Overall, the developed method attained fit-for-purpose results and it highlights the applicability of high-resolution mass spectrometry (HRMS) detection in mycotoxin food analysis

    Bioprospecting of microalgae: Proper extraction followed by high performance liquid chromatographic-high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization

    No full text
    Currently, the interest in microalgae as a source of biologically active components exploitable as supplementary ingredients to food/feed or in cosmetics continues to increase. Existing research mainly aims to focus on revealing and recovering the rare, cost competitive components of the algae metabolom. Because these components could be of very different physicochemical character, a universal approach for their isolation and characterization should be developed. This study demonstrates the systematic development of the extraction strategy that represents one of the key challenges in effective algae bioprospecting, which predefines their further industrial application. By using of Trachydiscus minutus as a model microalgae biomass, following procedures were tested and critically evaluated in order to develop the generic procedure for microalgae bioprospecting: (i) various ways of mechanical disintegration of algae cells enabling maximum extraction efficiency, (ii) the use of a wide range of extraction solvents/solvent mixtures suitable for optimal extraction yields of polar, medium-polar, and non-polar compounds, (iii) the use of consecutive extractions as a fractionation approach. Within the study, targeted screening of selected compounds representing broad range of polarities was realized by ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometric detection (UHPLC-HRMS/MS), to assess the effectiveness of undertaken isolation steps. As a result, simple and high-throughput extraction-fractionation strategy based on consecutive extraction with water-aqueous methanol-hexane/isopropanol was developed. Moreover, to demonstrate the potential of the UHPLC-HRMS/MS for the retrospective non-target screening and compounds identification, the collected mass spectra have been evaluated to characterize the pattern of extracted metabolites. Attention was focused on medium-/non-polar extracts and characterization of lipid species present in the T. minutus algae. Such detailed information on the composition of native (non-hydrolyzed) lipids of this microalga has not been published yet

    Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: Comparison of efficiency and efficacy of different extraction procedures

    No full text
    The effectiveness of four extraction methods (modified QuEChERS, matrix solid-phase dispersion (MSPD), solid-liquid extraction (SLE) and solid-phase extraction (SPE) clean-up) were evaluated for simultaneous determination of 32 mycotoxins produced by the genus Fusarium, Claviceps, Aspergillus, Penicillium and Alternaria in barley by ultra high pressure liquid chromatography coupled to ultra-high resolution mass spectrometry (UHPLC-Orbitrap® MS). The efficiency and efficacy of extraction methods were evaluated and compared in number of extracted mycotoxins and obtained recoveries. From the one point of view, QuEChERS procedure was fast and easy, as well as it was able to successfully extract all selected mycotoxins. On the other hand, SLE method, MSPD and SPE clean-up method did not extract adequately all selected mycotoxins and recoveries were not suitable enough. Thereby, method employing QuEChERS extraction connected with UHPLC-Orbitrap® MS was developed to quantify 32 mycotoxins in barley within this study. Analytical method was validated and recoveries ranged from 72% to 101% for selected mycotoxins with only one exception nivalenol (NIV) and deoxynivalenol-3-glucoside (D3G), which were lower than 67%. Relative standard deviations (RSD) were lower than 17.4% for all target mycotoxins. The lowest calibration levels (LCLs) ranged from 1 to 100 μg/ kg. Validated method was finally used for monitoring mycotoxins in a total of 15 Czech barley samples, when only Fusarium toxins representatives were detected in 53% of samples and the mycotoxins with the highest incidence were enniatins

    Untargeted metabolomics based on ultra-high-performance liquid chromatography–high-resolution mass spectrometry merged with chemometrics: A new predictable tool for an early detection of mycotoxins

    No full text
    In order to explore the early detection of mycotoxins in wheat three standardized approaches (Fusarium disease severity, PCR assays for Fusarium spp. identification and mycotoxin quantification) and a novel untargeted metabolomics strategy were jointly assessed. In the first phase of this research, standardized approaches were able to quantify mycotoxins and identify Fusarium spp. Then, an UHPLC-QTOF metabolic fingerprinting method was developed to investigate plant-pathogen cross-talk. At the same time, chemometrics analysis demonstrated to be a powerful tool in order to distinguish low and strong infection levels. Combining these results, the cross-talk plant pathogen related to the early detection of mycotoxins was discovered. As a rapid response to fungal infection an overexpression of phosphatidic acids was discovered. By contrast, when the infection became stronger an increase of oxylipins and diacylglycerols was revealed

    Fungal Endophytes of Vitis vinifera—Plant Growth Promoters or Potentially Toxinogenic Agents?

    No full text
    Fungal endophytes occurring in grapevine (Vitis vinifera L.) are usually important sources of various compounds with biological activities with great potential for use in agriculture. Nevertheless, many species isolated from this plant belong to the genera Fusarium, Alternaria, or Aspergillus, all of which are well-known to produce mycotoxins. Our study is focused on the assessment of the toxinogenic potential of fungal endophytes isolated from vineyards in the Czech Republic. In total, 20 endophytic fungal species were cultivated in wine must, and 57 mycotoxins of different classes were analysed by liquid chromatography coupled with mass spectrometry. As a result, alternariol, tentoxin, meleagrin, roquefortine C, gliotoxin, and verruculogen were detected in the culture medium, of which verruculogen followed by gliotoxin were the most frequent (present in 90 and 40% of samples, respectively) and most concentrated (up to thousands ng/mL). The alternaria mycotoxins alternariol and tentoxin were detected not only in Alternaria sp. cultures, but traces of these mycotoxins were also quantified in the Diatripe and Epicoccum cultures. Meleagrin and roquefortine C were detected in Didymella sancta and Penicillium crustosum, gliotoxin was detected in Alternaria sp., Didymella sp., Aureobasidium pullulans, Cladosporium herbarum, Penicillium crustosum and Pleurophoma ossicola, and verruculogen was quantified in 99% of endophytic isolates investigated. The potential of endophytes to produce mycotoxins should be carefully checked, specifically in cases where they are intended for the purpose of V. vinifera growing

    Mycotoxins in Plant-Based Dietary Supplements: Hidden Health Risk for Consumers

    No full text
    Mycotoxin contamination of dietary supplements represents a possible risk for human health, especially in the case of products intended for people suffering from certain health conditions. The aim of this study was to assess the extent of this problem based on analyses of a wide set of herbal-based dietary supplements intended for various purposes: (i) treatment of liver diseases (milk thistle); (ii) reduction of menopause effects (red clover, flax seed, and soy); and (iii) preparations for general health support (green barley, nettle, goji berries, yucca, etc.) The analytical method including 57 mycotoxins was based on a QuEChERS-like (quick, easy, cheap, effective, rugged, safe) approach and ultrahigh performance liquid chromatography coupled with tandem mass spectrometry. The main mycotoxins determined were <i>Fusarium</i> trichothecenes, zearalenone and enniatins, and <i>Alternaria</i> mycotoxins. Co-occurrence of enniatins, HT-2/T-2 toxins, and <i>Alternaria</i> toxins was observed in many cases. The highest mycotoxin concentrations were found in milk thistle-based supplements (up to 37 mg/kg in the sum)
    corecore