5 research outputs found

    Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from <i>Bordetella pertussis</i>

    Get PDF
    Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation.Facultad de Ciencias ExactasInstituto de Biotecnologia y Biologia Molecula

    Bone Marrow Stroma-Induced Transcriptome and Regulome Signatures of Multiple Myeloma

    No full text
    Multiple myeloma (MM) is a hematological cancer with inevitable drug resistance. MM cells interacting with bone marrow stromal cells (BMSCs) undergo substantial changes in the transcriptome and develop de novo multi-drug resistance. As a critical component in transcriptional regulation, how the chromatin landscape is transformed in MM cells exposed to BMSCs and contributes to the transcriptional response to BMSCs remains elusive. We profiled the transcriptome and regulome for MM cells using a transwell coculture system with BMSCs. The transcriptome and regulome of MM cells from the upper transwell resembled MM cells that coexisted with BMSCs from the lower chamber but were distinctive to monoculture. BMSC-induced genes were enriched in the JAK2/STAT3 signaling pathway, unfolded protein stress, signatures of early plasma cells, and response to proteasome inhibitors. Genes with increasing accessibility at multiple regulatory sites were preferentially induced by BMSCs; these genes were enriched in functions linked to responses to drugs and unfavorable clinic outcomes. We proposed JUNB and ATF4::CEBP&beta; as candidate transcription factors (TFs) that modulate the BMSC-induced transformation of the regulome linked to the transcriptional response. Together, we characterized the BMSC-induced transcriptome and regulome signatures of MM cells to facilitate research on epigenetic mechanisms of BMSC-induced multi-drug resistance in MM

    Emergence of Resistance to MTI-101 Selects for a MET Genotype and Phenotype in EGFR Driven PC-9 and PTEN Deleted H446 Lung Cancer Cell Lines

    No full text
    MTI-101 is a first-in-class cyclic peptide that kills cells via calcium overload in a caspase-independent manner. Understanding biomarkers of response is critical for positioning a novel therapeutic toward clinical development. Isogenic MTI-101-acquired drug-resistant lung cancer cell line systems (PC-9 and H446) coupled with differential RNA-SEQ analysis indicated that downregulated genes were enriched in the hallmark gene set for epithelial-to-mesenchymal transition (EMT) in both MTI-101-acquired resistant cell lines. The RNA-SEQ results were consistent with changes in the phenotype, including a decreased invasion in Matrigel and expression changes in EMT markers (E-cadherin, vimentin and Twist) at the protein level. Furthermore, in the EGFR-driven PC-9 cell line, selection for resistance towards MTI-101 resulted in collateral sensitivity toward EGFR inhibitors. MTI-101 treatment showed synergistic activity with the standard of care agents erlotinib, osimertinib and cisplatin when used in combination in PC-9 and H446 cells, respectively. Finally, in vivo data indicate that MTI-101 treatment selects for increased E-cadherin and decreased vimentin in H446, along with a decreased incident of bone metastasis in the PC-9 in vivo model. Together, these data indicate that chronic MTI-101 treatment can lead to a change in cell state that could potentially be leveraged therapeutically to reduce metastatic disease

    Nanosphere pharmacodynamics improves safety of immunostimulatory cytokine therapy

    No full text
    Summary: Systemic administration of interleukin (IL)-12 induces potent anti-tumor immune responses in preclinical cancer models through the systemic activation of effector immune cells and release of proinflammatory cytokines. IL-12-loaded PLGA nanospheres (IL12ns) are hypothesized to improve therapeutic efficacy and thwart unwanted side effects observed in previous human clinical trials. Through the investigation of peripheral blood and local tissue immune responses in healthy BALB/c mice, the immune-protective pharmacodynamics of IL12ns were suggested. Nanospheres increased pro-inflammatory plasma cytokines/chemokines (IFN-γ, IL-6, TNF-α, and CXCL10) without inducing maladaptive transcriptomic signatures in circulating peripheral immune cells. Gene expression profiling revealed activation of pro-inflammatory signaling pathways in systemic tissues, the likely source of these effector cytokines. These data support that nanosphere pharmacodynamics, including shielding IL-12 from circulating immune cells, depositing peripherally in systemic immune tissues, and then slowly eluting bioactive cytokine, thereafter, are essential to safe immunostimulatory therapy
    corecore