4,694 research outputs found

    The reported use and effectiveness of Hypericum (St John’s wort) on affective symptoms in a depression self-help group

    Get PDF
    A recent meta-analysis suggested that Hypericum perforatum (St John’s wort) is an effective treatment for mild to moderate depression and may have a superior side-effect profile to some antidepressant drugs. The aim of this study was to assess the use of herbal remedies in treating depressive and anxiety symptoms, as reported by members of the UK self-help organization Depression Alliance using self-completed questionnaires. More than 50% of the 452 respondents reported using Hypericum, onequarter of whom also reported concurrent use of traditional antidepressants. Most of the sample reported sufficient symptoms for warranting a diagnosis of major depression, with the majority also describing symptoms suggestive of co-morbid psychiatric conditions. One-half of the Hypericum users experienced symptom improvement, which for most occurred within the first 4 weeks of use. Response was better for those with mild as compared to severe symptoms and poorer for those taking Hypericum alongside other antidepressants. The responders were generally older than non-responders. Adverse effects were reported by one-quarter of users and were mostly psychological in nature. This retrospective survey indicated that use of herbal remedies was common in this population. Although often helpful in relieving symptoms, particularly in those with mild depression, there is a risk of adverse events and drug interaction

    Similarity Renormalization, Hamiltonian Flow Equations, and Dyson's Intermediate Representation

    Get PDF
    A general framework is presented for the renormalization of Hamiltonians via a similarity transformation. Divergences in the similarity flow equations may be handled with dimensional regularization in this approach, and the resulting effective Hamiltonian is finite since states well-separated in energy are uncoupled. Specific schemes developed several years ago by Glazek and Wilson and contemporaneously by Wegner correspond to particular choices within this framework, and the relative merits of such choices are discussed from this vantage point. It is shown that a scheme for the transformation of Hamiltonians introduced by Dyson in the early 1950's also corresponds to a particular choice within the similarity renormalization framework, and it is argued that Dyson's scheme is preferable to the others for ease of computation. As an example, it is shown how a logarithmically confining potential arises simply at second order in light-front QCD within Dyson's scheme, a result found previously for other similarity renormalization schemes. Steps toward higher order and nonperturbative calculations are outlined. In particular, a set of equations analogous to Dyson-Schwinger equations is developed.Comment: REVTex, 32 pages, 7 figures (corrected references

    Metalanguage in L1 English-speaking 12-year-olds: which aspects of writing do they talk about?

    Get PDF
    Traditional psycholinguistic approaches to metalinguistic awareness in L1 learners elicit responses containing metalanguage that demonstrates metalinguistic awareness of pre-determined aspects of language knowledge. This paper, which takes a more ethnographic approach, demonstrates how pupils are able to engage their own focus of metalanguage when reflecting on their everyday learning activities involving written language. What is equally significant is what their metalanguage choices reveal about their understanding and application of written language concepts

    Systematic Renormalization in Hamiltonian Light-Front Field Theory

    Get PDF
    We develop a systematic method for computing a renormalized light-front field theory Hamiltonian that can lead to bound states that rapidly converge in an expansion in free-particle Fock-space sectors. To accomplish this without dropping any Fock sectors from the theory, and to regulate the Hamiltonian, we suppress the matrix elements of the Hamiltonian between free-particle Fock-space states that differ in free mass by more than a cutoff. The cutoff violates a number of physical principles of the theory, and thus the Hamiltonian is not just the canonical Hamiltonian with masses and couplings redefined by renormalization. Instead, the Hamiltonian must be allowed to contain all operators that are consistent with the unviolated physical principles of the theory. We show that if we require the Hamiltonian to produce cutoff-independent physical quantities and we require it to respect the unviolated physical principles of the theory, then its matrix elements are uniquely determined in terms of the fundamental parameters of the theory. This method is designed to be applied to QCD, but for simplicity, we illustrate our method by computing and analyzing second- and third-order matrix elements of the Hamiltonian in massless phi-cubed theory in six dimensions.Comment: 47 pages, 6 figures; improved referencing, minor presentation change

    Systematic Renormalization in Hamiltonian Light-Front Field Theory: The Massive Generalization

    Get PDF
    Hamiltonian light-front field theory can be used to solve for hadron states in QCD. To this end, a method has been developed for systematic renormalization of Hamiltonian light-front field theories, with the hope of applying the method to QCD. It assumed massless particles, so its immediate application to QCD is limited to gluon states or states where quark masses can be neglected. This paper builds on the previous work by including particle masses non-perturbatively, which is necessary for a full treatment of QCD. We show that several subtle new issues are encountered when including masses non-perturbatively. The method with masses is algebraically and conceptually more difficult; however, we focus on how the methods differ. We demonstrate the method using massive phi^3 theory in 5+1 dimensions, which has important similarities to QCD.Comment: 7 pages, 2 figures. Corrected error in Eq. (11), v3: Added extra disclaimer after Eq. (2), and some clarification at end of Sec. 3.3. Final published versio

    Impact of localization on Dyson's circular ensemble

    Full text link
    A wide variety of complex physical systems described by unitary matrices have been shown numerically to satisfy level statistics predicted by Dyson's circular ensemble. We argue that the impact of localization in such systems is to provide certain restrictions on the eigenvalues. We consider a solvable model which takes into account such restrictions qualitatively and find that within the model a gap is created in the spectrum, and there is a transition from the universal Wigner distribution towards a Poisson distribution with increasing localization.Comment: To be published in J. Phys.

    On viscous propulsion in active transversely isotropic media

    Get PDF
    We report a corrigendum to the paper 'Viscous propulsion in active transversely-isotropic media' [J. Fluid Mech. 812, 501-524, 2017 / arxiv 1608.01451].Comment: 12 pages, 3 figure

    Determination of the Physical Conditions of the Knots in the Helix Nebula from Optical and Infrared Observations

    Get PDF
    [Abridged] We use new HST and archived images to clarify the nature of the knots in the Helix Nebula. We employ published far infrared spectrophotometry and existing 2.12 micron images to establish that the population distribution of the lowest ro-vibrational states of H2 is close to the distribution of a gas in LTE at 988 +- 119 K. We derive a total flux from the nebula in H2 lines and compare this with the power available from the central star for producing this radiation. We establish that neither soft X-rays nor FUV radiation has enough energy to power the H2 radiation, only the stellar EUV radiation shortward of 912 Angstrom does. Advection of material from the cold regions of the knots produces an extensive zone where both atomic and molecular hydrogen are found, allowing the H2 to directly be heated by Lyman continuum radiation, thus providing a mechanism that can explain the excitation temperature and surface brightness of the cusps and tails. New images of the knot 378-801 reveal that the 2.12 micron cusp and tail lie immediately inside the ionized atomic gas zone. This firmly establishes that the "tail" structure is an ionization bounded radiation shadow behind the optically thick core of the knot. A unique new image in the HeII 4686 Angstrom line fails to show any emission from knots that might have been found in the He++ core of the nebula. We also re-examined high signal-to-noise ratio ground-based telescope images of this same inner region and found no evidence of structures that could be related to knots.Comment: Astronomical Journal, in press. Some figures are shown at reduced resolution. A full resolution version is available at http://www.ifront.org/wiki/Helix_Nebula_2007_Pape

    Black Holes Surrounded by Uniformly Rotating Rings

    Full text link
    Highly accurate numerical solutions to the problem of Black Holes surrounded by uniformly rotating rings in axially symmetric, stationary spacetimes are presented. The numerical methods developed to handle the problem are discussed in some detail. Related Newtonian problems are described and numerical results provided, which show that configurations can reach an inner mass-shedding limit as the mass of the central object increases. Exemplary results for the full relativistic problem for rings of constant density are given and the deformation of the event horizon due to the presence of the ring is demonstrated. Finally, we provide an example of a system for which the angular momentum of the central Black Hole divided by the square of its mass exceeds one.Comment: 12 pages, 14 figures, revtex, v4: minor changes, Eq. (17) corrected, corresponds to version in PR
    • …
    corecore