138 research outputs found

    Addressing the path-length-dependency confound in white matter tract segmentation

    Get PDF
    We derive the Iterative Confidence Enhancement of Tractography (ICE-T) framework to address the problem of path-length dependency (PLD), the streamline dispersivity confound inherent to probabilistic tractography methods. We show that PLD can arise as a non-linear effect, compounded by tissue complexity, and therefore cannot be handled using linear correction methods. ICE-T is an easy-to-implement framework that acts as a wrapper around most probabilistic streamline tractography methods, iteratively growing the tractography seed regions. Tract networks segmented with ICE-T can subsequently be delineated with a global threshold, even from a single-voxel seed. We investigated ICE-T performance using ex vivo pig-brain datasets where true positives were known via in vivo tracers, and applied the derived ICE-T parameters to a human in vivo dataset. We examined the parameter space of ICE-T: the number of streamlines emitted per voxel, and a threshold applied at each iteration. As few as 20 streamlines per seed-voxel, and a robust range of ICE-T thresholds, were shown to sufficiently segment the desired tract network. Outside this range, the tract network either approximated the complete white-matter compartment (too low threshold) or failed to propagate through complex regions (too high threshold). The parameters were shown to be generalizable across seed regions. With ICE-T, the degree of both near-seed flare due to false positives, and of distal false negatives, are decreased when compared with thresholded probabilistic tractography without ICE-T. Since ICE-T only addresses PLD, the degree of remaining false-positives and false-negatives will consequently be mainly attributable to the particular tractography method employed. Given the benefits offered by ICE-T, we would suggest that future studies consider this or a similar approach when using tractography to provide tract segmentations for tract based analysis, or for brain network analysis

    Simultaneous Assessment of White Matter Changes in Microstructure and Connectedness in the Blind Brain

    Get PDF
    Magnetic resonance imaging (MRI) of the human brain has provided converging evidence that visual deprivation induces regional changes in white matter (WM) microstructure. It remains unclear how these changes modify network connections between brain regions. Here we used diffusion-weighted MRI to relate differences in microstructure and structural connectedness of WM in individuals with congenital or late-onset blindness relative to normally sighted controls. Diffusion tensor imaging (DTI) provided voxel-specific microstructural features of the tissue, while anatomical connectivity mapping (ACM) assessed the connectedness of each voxel with the rest of the brain. ACM yielded reduced anatomical connectivity in the corpus callosum in individuals with congenital but not late-onset blindness. ACM did not identify any brain region where blindness resulted in increased anatomical connectivity. DTI revealed widespread microstructural differences as indexed by a reduced regional fractional anisotropy (FA). Blind individuals showed lower FA in the primary visual and the ventral visual processing stream relative to sighted controls regardless of the blindness onset. The results show that visual deprivation shapes WM microstructure and anatomical connectivity, but these changes appear to be spatially dissociated as changes emerge in different WM tracts. They also indicate that regional differences in anatomical connectivity depend on the onset of blindness

    The crossed projection to the striatum in two species of monkey and in humans: behavioral and evolutionary significance

    Get PDF
    The corpus callosum establishes the anatomical continuity between the 2 hemispheres and coordinates their activity. Using histological tracing, single axon reconstructions, and diffusion tractography, we describe a callosal projection to n caudatus and putamen in monkeys and humans. In both species, the origin of this projection is more restricted than that of the ipsilateral projection. In monkeys, it consists of thin axons (0.4–0.6 µm), appropriate for spatial and temporal dispersion of subliminal inputs. For prefrontal cortex, contralateral minus ipsilateral delays to striatum calculated from axon diameters and conduction distance are <2 ms in the monkey and, by extrapolation, <4 ms in humans. This delay corresponds to the performance in Poffenberger's paradigm, a classical attempt to estimate central conduction delays, with a neuropsychological task. In both species, callosal cortico-striatal projections originate from prefrontal, premotor, and motor areas. In humans, we discovered a new projection originating from superior parietal lobule, supramarginal, and superior temporal gyrus, regions engaged in language processing. This projection crosses in the isthmus the lesion of which was reported to dissociate syntax and prosody. The projection might originate from an overproduction of callosal projections in development, differentially pruned depending on species

    Thalamocortical Connectivity and Microstructural Changes in Congenital and Late Blindness

    Get PDF
    There is ample evidence that the occipital cortex of congenitally blind individuals processes nonvisual information. It remains a debate whether the cross-modal activation of the occipital cortex is mediated through the modulation of preexisting corticocortical projections or the reorganisation of thalamocortical connectivity. Current knowledge on this topic largely stems from anatomical studies in animal models. The aim of this study was to test whether purported changes in thalamocortical connectivity in blindness can be revealed by tractography based on diffusion-weighted magnetic resonance imaging. To assess the thalamocortical network, we used a clustering method based on the thalamic white matter projections towards predefined cortical regions. Five thalamic clusters were obtained in each group representing their cortical projections. Although we did not find differences in the thalamocortical network between congenitally blind individuals, late blind individuals, and normal sighted controls, diffusion tensor imaging (DTI) indices revealed significant microstructural changes within thalamic clusters of both blind groups. Furthermore, we find a significant decrease in fractional anisotropy (FA) in occipital and temporal thalamocortical projections in both blind groups that were not captured at the network level. This suggests that plastic microstructural changes have taken place, but not in a degree to be reflected in the tractography-based thalamocortical network

    Cytosolic diffusivity and microscopic anisotropy of N-acetyl aspartate in human white matter with diffusion-weighted MRS at 7 T

    Get PDF
    Metabolite diffusion measurable in humans in vivo with diffusion-weighted spectroscopy (DW-MRS) provides a window into the intracellular morphology and state of specific cell types. Anisotropic diffusion in white matter is governed by the microscopic properties of the individual cell types and their structural units (axons, soma, dendrites). However, anisotropy is also markedly affected by the macroscopic orientational distribution over the imaging voxel, particularly in DW-MRS, where the dimensions of the volume of interest (VOI) are much larger than those typically used in diffusion-weighted imaging. One way to address the confound of macroscopic structural features is to average the measurements acquired with uniformly distributed gradient directions to mimic a situation where fibers present in the VOI are orientationally uniformly distributed. This situation allows the extraction of relevant microstructural features such as transverse and longitudinal diffusivities within axons and the related microscopic fractional anisotropy. We present human DW-MRS data acquired at 7 T in two different white matter regions, processed and analyzed as described above, and find that intra-axonal diffusion of the neuronal metabolite N-acetyl aspartate is in good correspondence to simple model interpretations, such as multi-Gaussian diffusion from disperse fibers where the transverse diffusivity can be neglected. We also discuss the implications of our approach for current and future applications of DW-MRS for cell-specific measurements
    corecore