65 research outputs found

    Standardized Loads Acting in Hip Implants

    Get PDF
    With the increasing success of hip joint replacements, the average age of patients has decreased, patients have become more active and their expectations of the implant durability have risen. Thus, pre-clinical endurance tests on hip implants require defining realistic in vivo loads from younger and more active patients. These loads require simplifications to be applicable for simulator tests and numerical analyses. Here, the contact forces in the joint were measured with instrumented hip implants in ten subjects during nine of the most physically demanding and frequent activities of daily living. Typical levels and directions of average and high joint loads were extracted from the intra- and inter-individually widely varying individual data. These data can also be used to analyse bone remodelling at the implant-bone interface, evaluate tissue straining in finite element studies or validate analytical loading predictions, among other uses. The current ISO standards for endurance tests of implant stems and necks are based on historic analytical data from the 1970s. Comparisons of these test forces with in vivo loads unveiled that their unidirectional orientations deviate from the time-dependent in vivo directions during walking and most other activities. The ISO force for testing the stem is substantially too low while the ISO force for the neck better matches typical in vivo magnitudes. Because the magnitudes and orientations of peak forces substantially vary among the activities, load scenarios that reflect a collection of time-dependent high forces should be applied rather than using unidirectional forces. Based on data from ten patients, proposals for the most demanding activities, the time courses of the contact forces and the required cycle numbers for testing are given here. Friction moments in the joint were measured in addition to the contact forces. The moment data were also standardized and can be applied to wear tests of the implant. It was shown that friction only very slightly influences the stresses in the implant neck and shaft

    In vivo load measurements with instrumented implants

    Get PDF
    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies

    In vivo hip joint loading during post-operative physiotherapeutic exercises.

    Get PDF
    INTRODUCTION: After hip surgery, it is the orthopedist's decision to allow full weight bearing to prevent complications or to prescribe partial weight bearing for bone ingrowth or fracture consolidation. While most loading conditions in the hip joint during activities of daily living are known, it remains unclear how demanding physiotherapeutic exercises are. Recommendations for clinical rehabilitation have been established, but these guidelines vary and have not been scientifically confirmed. The aim of this study was to provide a basis for practical recommendations by determining the hip joint contact forces and moments that act during physiotherapeutic activities. METHODS: Joint contact loads were telemetrically measured in 6 patients using instrumented hip endoprostheses. The resultant hip contact force, the torque around the implant stem, and the bending moment in the neck were determined for 13 common physiotherapeutic exercises, classified as weight bearing, isometric, long lever arm, or dynamic exercises, and compared to the loads during walking. RESULTS: With peak values up to 441%BW, weight bearing exercises caused the highest forces among all exercises; in some patients they exceeded those during walking. During voluntary isometric contractions, the peak loads ranged widely and potentially reached high levels, depending on the intensity of the contraction. Long lever arms and dynamic exercises caused loads that were distributed around 50% of those during walking. CONCLUSION: Weight bearing exercises should be avoided or handled cautiously within the early post-operative period. The hip joint loads during isometric exercises depend strongly on the contraction intensity. Nonetheless, most physiotherapeutic exercises seem to be non-hazardous when considering the load magnitudes, even though the loads were much higher than expected. When deciding between partial and full weight bearing, physicians should consider the loads relative to those caused by activities of daily living

    High-tech hip implant for wireless temperature measurements in vivo.

    Get PDF
    When walking long distances, hip prostheses heat up due to friction. The influence of articulating materials and lubricating properties of synovia on the final temperatures, as well as any potential biological consequences, are unknown. Such knowledge is essential for optimizing implant materials, identifying patients who are possibly at risk of implant loosening, and proving the concepts of current joint simulators. An instrumented hip implant with telemetric data transfer was developed to measure the implant temperatures in vivo. A clinical study with 100 patients is planned to measure the implant temperatures for different combinations of head and cup materials during walking. This study will answer the question of whether patients with synovia with poor lubricating properties may be at risk for thermally induced bone necrosis and subsequent implant failure. The study will also deliver the different friction properties of various implant materials and prove the significance of wear simulator tests. A clinically successful titanium hip endoprosthesis was modified to house the electronics inside its hollow neck. The electronics are powered by an external induction coil fixed around the joint. A temperature sensor inside the implant triggers a timer circuit, which produces an inductive pulse train with temperature-dependent intervals. This signal is detected by a giant magnetoresistive sensor fixed near the external energy coil. The implant temperature is measured with an accuracy of 0.1°C in a range between 20°C and 58°C and at a sampling rate of 2-10 Hz. This rate could be considerably increased for measuring other data, such as implant strain or vibration. The employed technique of transmitting data from inside of a closed titanium implant by low frequency magnetic pulses eliminates the need to use an electrical feedthrough and an antenna outside of the implant. It enables the design of mechanically safe and simple instrumented implants

    Activities of everyday life with high spinal loads.

    No full text
    Activities with high spinal loads should be avoided by patients with back problems. Awareness about these activities and knowledge of the associated loads are important for the proper design and pre-clinical testing of spinal implants. The loads on an instrumented vertebral body replacement have been telemetrically measured for approximately 1000 combinations of activities and parameters in 5 patients over a period up to 65 months postoperatively. A database containing, among others, extreme values for load components in more than 13,500 datasets was searched for 10 activities that cause the highest resultant force, bending moment, torsional moment, or shear force in an anatomical direction. The following activities caused high resultant forces: lifting a weight from the ground, forward elevation of straight arms with a weight in hands, moving a weight laterally in front of the body with hanging arms, changing the body position, staircase walking, tying shoes, and upper body flexion. All activities have in common that the center of mass of the upper body was moved anteriorly. Forces up to 1650 N were measured for these activities of daily life. However, there was a large intra- and inter-individual variation in the implant loads for the various activities depending on how exercises were performed. Measured shear forces were usually higher in the posterior direction than in the anterior direction. Activities with high resultant forces usually caused high values of other load components

    Magnitude and direction of HIGH100 peak forces during 9 activities.

    No full text
    <p>High loads HIGH100 from the average subject. Left = frontal plane. Middle = sagittal plane. Right = transverse plane. Vectors of peak forces act from the symbols (different activities) towards the head centre. Red vector = direction during walking. Small red dots = AVER75 peak forces from individual subjects during walking, indicating the inter-individual variation of force directions for the same activity.</p

    Coordinate system of right femur and implant.

    No full text
    <p>x, y, z = axes of femur coordinate system. x = parallel to posterior contour of condyles. P1 = intersection of neck axis and femoral midline. P2 = middle of intercondylar notch. z = straight femur axis between P1 and P2. Force components F<sub>x</sub>, F<sub>y</sub> and F<sub>z</sub> act in directions x, y and z. Moment components M<sub>x</sub>, M<sub>y</sub> and M<sub>z</sub> turn clockwise around x, y and z. The implant is turned clockwise by angles α<sub>z</sub>, α<sub>y</sub> and α<sub>x</sub> around the femur axes z, y and x. α<sub>z</sub> = anteversion of neck (negative). x’, y’, z’ = axes of implant. x<sub>n</sub>, y<sub>n</sub>, z<sub>n</sub> = coordinate system at distal end of implant neck. x<sub>s</sub>, y<sub>s</sub>, z<sub>s</sub> = coordinate system of stem 80 mm below head centre.</p

    Minima and maxima of HIGH100 force and moment components.

    No full text
    <p>Minima/Maxima within whole loading cycles. <sup>a</sup>/<sup>b</sup> = <b><i>highest/lowest</i></b> values from all activities except cycling and jogging. All moment components changed their signs within the cycle. See also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0155612#pone.0155612.g004" target="_blank">Fig 4</a>.</p

    Peak force and path of force vector during one cycle of walking.

    No full text
    <p>HIGH100 forces from the average subject. Left = frontal plane. Middle = sagittal plane. Right = transverse plane. The vector acts from the green trajectory towards the head centre. ‘Start’ and circle = point on trajectory at the instant of heel strike. Red dots = directions of the peak force. Dashed lines = limits of force directions throughout the cycle for forces > 1500 N. Angles α<sub>front</sub>, α<sub>sagit</sub>, α<sub>trans</sub> = angles of the force vector in 3 planes.</p
    • …
    corecore