222 research outputs found

    Vacuum Polarization and the Electric Charge of the Positron

    Full text link
    We show that higher-order vacuum polarization would contribute a measureable net charge to atoms, if the charges of electrons and positrons do not balance precisely. We obtain the limit Qe+Qeˉ<1018e|Q_e+Q_{\bar e}| < 10^{-18} e for the sum of the charges of electron and positron. This also constitutes a new bound on certain violations of PCT invariance.Comment: 9 pages, 1 figure attached as PostScript file, DUKE-TH-92-38. Revised versio

    Electric charge quantization without anomalies?

    Full text link
    In gauge theories like the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. We argue that the anomaly conditions are not quite as well motivated as the classical constraints, since it is possible that new fermions could exist which cancel potential anomalies. For this reason we examine the classically allowed electric charges of the known fermions and we point out that the electric charge of the tau neutrino is classically allowed to be non-zero. The experimental bound on the electric charge of the tau neutrino is many orders of magnitude weaker than for any other known neutrino. We discuss possible modifications of the minimal standard model such that electric charge is quantized classically.Comment: 10 McGill/93-3

    Constraints on the Electrical Charge Asymmetry of the Universe

    Full text link
    We use the isotropy of the Cosmic Microwave Background to place stringent constraints on a possible electrical charge asymmetry of the universe. We find the excess charge per baryon to be qep<1026eq_{e-p}<10^{-26}e in the case of a uniform distribution of charge, where ee is the charge of the electron. If the charge asymmetry is inhomogeneous, the constraints will depend on the spectral index, nn, of the induced magnetic field and range from qep<5×1020eq_{e-p}<5\times 10^{-20}e (n=2n=-2) to qep<2×1026eq_{e-p}<2\times 10^{-26}e (n2n\geq 2). If one could further assume that the charge asymmetries of individual particle species are not anti-correlated so as to cancel, this would imply, for photons, qγ<1035eq_\gamma< 10^{-35}e; for neutrinos, qν<4×1035eq_\nu<4\times10^{-35}e; and for heavy (light) dark matter particles qdm<4×1024eq_{\rm dm}<4\times10^{-24}e (qdm<4×1030eq_{\rm dm}<4\times10^{-30}e).Comment: New version to appear in JCA

    A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    Get PDF
    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure

    Clinical Implication of Targeting of Cancer Stem Cells

    Get PDF
    The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base

    Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells

    Get PDF
    For decades, in vitro expansion of transplantable hematopoietic stem cells (HSCs) has been an elusive goal. Here, we demonstrate that multipotent adult progenitor cells (MAPCs), isolated from green fluorescent protein (GFP)-transgenic mice and expanded in vitro for >40–80 population doublings, are capable of multilineage hematopoietic engraftment of immunodeficient mice. Among MAPC-derived GFP+CD45.2+ cells in the bone marrow of engrafted mice, HSCs were present that could radioprotect and reconstitute multilineage hematopoiesis in secondary and tertiary recipients, as well as myeloid and lymphoid hematopoietic progenitor subsets and functional GFP+ MAPC-derived lymphocytes that were functional. Although hematopoietic contribution by MAPCs was comparable to control KTLS HSCs, approximately 103-fold more MAPCs were required for efficient engraftment. Because GFP+ host-derived CD45.1+ cells were not observed, fusion is not likely to account for the generation of HSCs by MAPCs

    Microdevices for extensional rheometry of low viscosity elastic liquids : a review

    Get PDF
    Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations

    Aldehyde Dehydrogenase (ALDH) Activity Does Not Select for Cells with Enhanced Aggressive Properties in Malignant Melanoma

    Get PDF
    Malignant melanoma is an exceptionally aggressive, drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common, but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation, i.e. cancer stem cells (CSC), exists in malignant melanoma. Rather, it is suggested that multiple cell populations are implicated in initiation and progression of the disease, making it of importance to identify subpopulations with elevated aggressive properties.. Furthermore, both subpopulations showed similar sensitivity to the anti-melanoma drugs, dacarbazine and lexatumumab.These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells, implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma, and arguing against ALDH as a “universal” marker. Besides, it was shown that the ability to reestablish tumour heterogeneity is not necessarily linked to the more aggressive phenotype

    Non-Invasive Detection of a Small Number of Bioluminescent Cancer Cells In Vivo

    Get PDF
    Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice
    corecore