133 research outputs found

    Brn3a regulates neuronal subtype specification in the trigeminal ganglion by promoting Runx expression during sensory differentiation

    Get PDF
    The transcription factor Brn3a, product of the pou4f1 gene, is expressed in most sensory neurons throughout embryogenesis. Prior work has demonstrated a role for Brn3a in the repression of early neurogenic genes; here we describe a second major role for Brn3a in the specification of sensory subtypes in the trigeminal ganglion (TG). Sensory neurons initially co-express multiple Trk-family neurotrophin receptors, but are later marked by the unique expression of TrkA, TrkB or TrkC. Maturation of these sensory subtypes is known to depend on the expression of Runx transcription factors. Newborn Brn3a knockout mice fail to express TrkC, which is associated in the TG with mechanoreceptors, plus a set of functional genes associated with nociceptor subtypes. In embryonic Brn3a-/- ganglia, the normal expression of Runx3 is never initiated in TrkC+ neurons, and Runx1 expression is greatly attenuated in TrkA+ nociceptors. These changes are accompanied by expanded expression of TrkB in neurons that abnormally express multiple Trks, followed by the loss of TrkC and TrkA expression. In transgenic embryos expressing a Brn3a-VP16 dominant transactivator, Runx3 mRNA expression is increased, suggesting that it is a direct regulatory target of Brn3a. Chromatin immunoprecipitation confirms that Brn3a binds in vivo to a conserved upstream enhancer element within histone H3-acetylated chromatin in the Runx3 locus. Together these data show that Brn3a acts upstream of the Runx factors, which then repress TrkB expression to allow establishment of the non-overlapping Trk receptor profiles and correct terminally differentiated phenotypes

    Rectangular Hierarchical Cartograms for Socio-Economic Data

    Get PDF
    We present rectangular hierarchical cartograms for mapping socio-economic data. These density-normalising cartograms size spatial units by population, increasing the ease with which data for densely populated areas can be visually resolved compared to more conventional cartographic projections. Their hierarchical nature enables the study of spatial granularity in spatial hierarchies, hierarchical categorical data and multivariate data through false hierarchies. They are space-filling representations that make efficient use of space and their rectangular nature (which aims to be as square as possible) improves the ability to compare the sizes (therefore population) of geographical units. We demonstrate these cartograms by mapping the Office for National Statistics Output Area Classification (OAC) by unit postcode (1.52 million in Great Britain) through the postcode hierarchy, using these to explore spatial variation. We provide rich and detailed spatial summaries of socio-economic characteristics of population as types of treemap, exploring the effects of reconfiguring them to study spatial and non-spatial aspects of the OAC classification

    Visualizing the Effects of Scale and Geography in Multivariate Comparison

    Get PDF
    Abstract-Our research investigates the sensitivities and complexities of visualizing multivariate data over multiple scales with the consideration of local geography. We investigate this in the context of creating geodemographic classifications, where multivariate comparison for the variable selection process is an important, yet time-consuming and intensive process. We propose a visual interactive approach which allows skewed variables and those with strong correlations to be quickly identified and investigated and the geography of multi-scale correlation to be explored. Our objective with this paper is to present comprehensive documentation of the parameter space prior to the development of the visualization tools to help explore it

    POU-domain factor Brn3a regulates both distinct and common programs of gene expression in the spinal and trigeminal sensory ganglia

    Get PDF
    BACKGROUND: General somatic sensation is conveyed to the central nervous system at cranial levels by the trigeminal ganglion (TG), and at spinal levels by the dorsal root ganglia (DRG). Although these ganglia have similar functions, they have distinct embryological origins, in that both contain neurons originating from the neural crest, while only the TG includes cells derived from the placodal ectoderm. RESULTS: Here we use microarray analysis of E13.5 embryos to demonstrate that the developing DRG and TG have very similar overall patterns of gene expression. In mice lacking the POU-domain transcription factor Brn3a, the DRG and TG exhibit many common changes in gene expression, but a subset of Brn3a target genes show increased expression only in the TG. In the wild-type TG these Brn3a-repressed genes are silent, yet their promoter regions exhibit histone H3-acetylation levels similar to constitutively transcribed gene loci. This increased H3-acetylation is not observed in the DRG, suggesting that chromatin modifications play a role in cell-specific target gene regulation by Brn3a. CONCLUSION: These results demonstrate that one developmental role of Brn3a is to repress potential differences in gene expression between sensory neurons generated at different axial levels, and to regulate a convergent program of developmental gene expression, in which functionally similar populations of neurons are generated from different embryological substrates
    corecore