3,717 research outputs found

    Final Calibration of the Berkeley Extreme and Far-Ultraviolet Spectrometer on the ORFEUS-SPAS I and II Missions

    Get PDF
    The Berkeley Extreme and Far-Ultraviolet Spectrometer (BEFS) flew as part of the ORFEUS telescope on the ORFEUS-SPAS I and II space-shuttle missions in 1993 and 1996, respectively. The data obtained by this instrument have now entered the public domain. To facilitate their use by the astronomical community, we have re-extracted and re-calibrated both data sets, converted them into a standard (FITS) format, and placed them in the Multimission Archive at Space Telescope (MAST). Our final calibration yields improved wavelength scales and effective-area curves for both data sets.Comment: To appear in the January 2002 issue of the PASP. 17 pages with 9 embedded postscript figures; uses emulateapj5.st

    The Rapidly Rotating, Hydrogen Deficient, Hot Post-Asymptotic Giant Branch Star ZNG 1 in the Globular Cluster M5

    Full text link
    We report observations of the hot post-asymptotic giant branch star ZNG 1 in the globular cluster M5 (NGC 5904) with the Far Ultraviolet Spectroscopic Explorer (FUSE). From the resulting spectrum, we derive an effective temperature T_eff = 44300 +/- 300 K, a surface gravity log g = 4.3 +/- 0.1, a rotational velocity v sin i = 170 +/- 20 km/s, and a luminosity log (L/L_sun) = 3.52 +/- 0.04. The atmosphere is helium-rich (Y = 0.93), with enhanced carbon (2.6% by mass), nitrogen (0.51%) and oxygen (0.37%) abundances. The spectrum shows evidence for a wind with terminal velocity near 1000 km/s and an expanding shell of carbon- and nitrogen-rich material around the star. The abundance pattern of ZNG 1 is suggestive of the ``born-again'' scenario, whereby a star on the white-dwarf cooling curve undergoes a very late shell flash and returns to the AGB, but the star's rapid rotation is more easily explained by a previous interaction with a binary companion.Comment: 8 pages, 2 PostScript figures, Latex with emulateapj5. Accepted for publication in ApJ Letter

    Crossover from 2D to 3D in a weakly interacting Fermi gas

    Full text link
    We have studied the transition from two to three dimensions in a low temperature weakly interacting 6^6Li Fermi gas. Below a critical atom number, N2DN_{2D}, only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two-dimensional. Above N2DN_{2D} the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.Comment: Replaced with published manuscrip

    Statistical characterization of the forces on spheres in an upflow of air

    Get PDF
    The dynamics of a sphere fluidized in a nearly-levitating upflow of air were previously found to be identical to those of a Brownian particle in a two-dimensional harmonic trap, consistent with a Langevin equation [Ojha {\it et al.}, Nature {\bf 427}, 521 (2004)]. The random forcing, the drag, and the trapping potential represent different aspects of the interaction of the sphere with the air flow. In this paper we vary the experimental conditions for a single sphere, and report on how the force terms in the Langevin equation scale with air flow speed, sphere radius, sphere density, and system size. We also report on the effective interaction potential between two spheres in an upflow of air.Comment: 7 pages, experimen

    Nature of the spin resonance mode in CeCoIn5_5

    Full text link
    Spin-fluctuation-mediated unconventional superconductivity can emerge at the border of magnetism, featuring a superconducting order parameter that changes sign in momentum space. Detection of such a sign-change is experimentally challenging, since most probes are not phase-sensitive. The observation of a spin resonance mode (SRM) from inelastic neutron scattering is often seen as strong phase-sensitive evidence for a sign-changing superconducting order parameter, by assuming the SRM is a spin-excitonic bound state. Here, we show that for the heavy fermion superconductor CeCoIn5_5, its SRM defies expectations for a spin-excitonic bound state, and is not a manifestation of sign-changing superconductivity. Instead, the SRM in CeCoIn5_5 likely arises from a reduction of damping to a magnon-like mode in the superconducting state, due to its proximity to magnetic quantum criticality. Our findings emphasize the need for more stringent tests of whether SRMs are spin-excitonic, when using their presence to evidence sign-changing superconductivity.Comment: accepted for publication in Communications Physic

    Robust Upward Dispersion of the Neutron Spin Resonance in the Heavy Fermion Superconductor Ce1−x_{1-x}Ybx_{x}CoIn5_5

    Get PDF
    The neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the dd(s±s^{\pm})-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−x_{1-x}Ybx_{x}CoIn5_5 with x=0,0.05,0.3x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation using the electronic structure and the momentum dependence of the dx2−y2d_{x^2-y^2}-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn5_5, we conclude the robust upward dispersing resonance mode in Ce1−x_{1-x}Ybx_{x}CoIn5_5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario.Comment: Supplementary Information available upon reques

    The relationship between the optical Halpha filaments and the X-ray emission in the core of the Perseus cluster

    Full text link
    NGC 1275 in the centre of the Perseus cluster of galaxies, Abell 426, is surrounded by a spectacular filamentary Halpha nebula. Deep Chandra X-ray imaging has revealed that the brighter outer filaments are also detected in soft X-rays. This can be due to conduction and mixing of the cold gas in the filaments with the hot, dense intracluster medium. We show the correspondence of the filaments in both wavebands and draw attention to the relationship of two prominent curved NW filaments to an outer, buoyant radio bubble seen as a hole in the X-ray image. There is a strong resemblance in the shape of the hole and the disposition of the filaments to the behaviour of a large air bubble rising in water. If this is a correct analogy, then the flow is laminar and the intracluster gas around this radio source is not turbulent. We obtain a limit on the viscosity of this gas.Comment: Accepted for publication in MNRA

    A complex ray-tracing tool for high-frequency mean-field flow interaction effects in jets

    No full text
    This paper presents a complex ray-tracing tool for the calculation of high-frequency Green’s functions in 3D mean field jet flows. For a generic problem, the ray solution suffers from three main deficiencies: multiplicity of solutions, singularities at caustics, and the determining of complex solutions. The purpose of this paper is to generalize, combine and apply existing stationary media methods to moving media scenarios. Multiplicities are dealt with using an equivalent two-point boundary-value problem, whilst non-uniformities at caustics are corrected using diffraction catastrophes. Complex rays are found using a combination of imaginary perturbations, an assumption of caustic stability, and analytic continuation of the receiver curve. To demonstrate this method, the ray tool is compared against a high-frequency modal solution of Lilley’s equation for an off-axis point source. This solution is representative of high-frequency source positions in real jets and is rich in caustic structures. A full utilization of the ray tool is shown to provide excellent results<br/

    Equation level matching: An extension of the method of matched asymptotic expansion for problems of wave propagation

    Full text link
    We introduce an alternative to the method of matched asymptotic expansions. In the "traditional" implementation, approximate solutions, valid in different (but overlapping) regions are matched by using "intermediate" variables. Here we propose to match at the level of the equations involved, via a "uniform expansion" whose equations enfold those of the approximations to be matched. This has the advantage that one does not need to explicitly solve the asymptotic equations to do the matching, which can be quite impossible for some problems. In addition, it allows matching to proceed in certain wave situations where the traditional approach fails because the time behaviors differ (e.g., one of the expansions does not include dissipation). On the other hand, this approach does not provide the fairly explicit approximations resulting from standard matching. In fact, this is not even its aim, which to produce the "simplest" set of equations that capture the behavior
    • 

    corecore