8,325 research outputs found
Execution: the Critical âWhatâs Next?â in Strategic Human Resource Management
The Human Resource Planning Societyâs 1999 State of the Art/Practice (SOTA/P) study was conducted by a virtual team of researchers who interviewed and surveyed 232 human resource and line executives, consultants, and academics worldwide. Looking three to five years ahead, the study probed four basic topics: (1) major emerging trends in external environments, (2) essential organizational capabilities, (3) critical people issues, and (4) the evolving role of the human resource function. This article briefly reports some of the studyâs major findings, along with an implied action agenda â the âgotta doâs for the leading edge. Cutting through the complexity, the general tone is one of urgency emanating from the intersection of several underlying themes: the increasing fierceness of competition, the rapid and unrelenting pace of change, the imperatives of marketplace and thus organizational agility, and the corresponding need to buck prevailing trends by attracting and, especially, retaining and capturing the commitment of world-class talent. While it all adds up to a golden opportunity for human resource functions, there is a clear need to get to get on with it â to get better, faster, and smarter â or run the risk of being left in the proverbial dust. Execute or be executed
A study of intersections of Schubert varieties
We study the local and global intersection cohomology of the intersection of
two Schubert varieties in a flag manifold. In this version some new references
are added.Comment: 6 page
Technical management techniques for identification and control of industrial safety and pollution hazards
Constructive recommendations are suggested for pollution problems from offshore energy resources industries on outer continental shelf. Technical management techniques for pollution identification and control offer possible applications to space engineering and management
Ablation debris control by means of closed thick film filtered water immersion
The performance of laser ablation generated debris control by means of open immersion techniques have been shown to be limited by flow surface ripple effects on the beam and the action of ablation plume pressure loss by splashing of the immersion fluid. To eradicate these issues a closed technique has been developed which ensured a controlled geometry for both the optical interfaces of the flowing liquid film. This had the action of preventing splashing, ensuring repeatable machining conditions and allowed for control of liquid flow velocity. To investigate the performance benefits of this closed immersion technique bisphenol A polycarbonate samples have been machined using filtered water at a number of flow velocities. The results demonstrate the efficacy of the closed immersion technique: a 93% decrease in debris is produced when machining under closed filtered water immersion; the average debris particle size becomes larger, with an equal proportion of small and medium sized debris being produced when laser machining under closed flowing filtered water immersion; large debris is shown to be displaced further by a given flow velocity than smaller debris, showing that the action of flow turbulence in the duct has more impact on smaller debris. Low flow velocities were found to be less effective at controlling the positional trend of deposition of laser ablation generated debris than high flow velocities; but, use of excessive flow velocities resulted in turbulence motivated deposition. This work is of interest to the laser micromachining community and may aide in the manufacture of 2.5D laser etched patterns covering large area wafers and could be applied to a range of wavelengths and laser types
Recommended from our members
Optimization of the neutron yield in fusion plasmas produced by Coulomb explosions of deuterium clusters irradiated by a petawatt laser
The kinetic energy of hot (multi-keV) ions from the laser-driven Coulomb explosion of deuterium clusters and the resulting fusion yield in plasmas formed from these exploding clusters has been investigated under a variety of conditions using the Texas Petawatt laser. An optimum laser intensity was found for producing neutrons in these cluster fusion plasmas with corresponding average ion energies of 14 keV. The substantial volume (1-10 mm(3)) of the laser-cluster interaction produced by the petawatt peak power laser pulse led to a fusion yield of 1.6x10(7) neutrons in a single shot with a 120 J, 170 fs laser pulse. Possible effects of prepulses are discussed. DOI: 10.1103/PhysRevE.87.023106Glenn Focht Memorial FellowshipNNSA DE-FC52-08NA28512DOE Office of Basic Energy SciencesPhysic
Local Nodes in Global Networks: The Geography of Knowledge Flows in Biotechnology Innovation
The literature on innovation and interactive learning has tended to emphasize the importance of local networks, inter-firm collaboration and knowledge flows as the principal source of technological dynamism. More recently, however, this view has come to be challenged by other perspectives that argue for the importance of non-local knowledge flows. According to this alternative approach, truly dynamic economic regions are characterized both by dense local social interaction and knowledge circulation, as well as strong inter-regional and international connections to outside knowledge sources and partners. This paper offers an empirical examination of these issues by examining the geography of knowledge flows associated with innovation in biotechnology. We begin by reviewing the growing literature on the nature and geography of innovation in biotechnology research and the commercialization process. Then, focusing on the Canadian biotech industry, we examine the determinants of innovation (measured through patenting activity), paying particular attention to internal resources and capabilities of the firm, as well as local and global flows of knowledge and capital. Our study is based on the analysis of Statistics Canadaâs 1999 Survey of Biotechnology Use and Development, which covers 358 core biotechnology firms. Our findings highlight the importance of in-house technological capability and absorptive capacity as determinants of successful innovation in biotechnology firms. Furthermore, our results document the precise ways in which knowledge circulates, in both embodied and disembodied forms, both locally and globally. We also highlight the role of formal intellectual property transactions (domestic and international) in promoting knowledge flows. Although we document the importance of global networks in our findings, our results also reveal the value of local networks and specific forms of embedding. Local relational linkages are especially important when raising capitalâand the expertise that comes with itâto support innovation. Nevertheless, our empirical results raise some troubling questions about the alleged pre-eminence of the local in fostering innovation
- âŠ