2,692 research outputs found

    Geo-neutrinos and Earth Models

    Get PDF
    We present the current status of geo-neutrino measurements and their implications for radiogenic heating in the mantle. Earth models predict different levels of radiogenic heating and, therefore, different geo-neutrino fluxes from the mantle. Seismic tomography reveals features in the deep mantle possibly correlated with radiogenic heating and causing spatial variations in the mantle geo-neutrino flux at the Earth surface. An ocean-based observatory offers the greatest sensitivity to the mantle flux and potential for resolving Earth models and mantle features. Refinements to estimates of the geo-neutrino flux from continental crust reduce uncertainty in measurements of the mantle flux, especially measurements from land-based observatories. These refinements enable the resolution of Earth models using the combined measurements from multiple continental observatories.Comment: 9 pages, 4 figures; Contributed paper TAUP 201

    Dislocation interactions and crack nucleation in a fatigued near-alpha titanium alloy

    Get PDF
    Dislocation interactions at the crack nucleation site were investigated in near-alpha titanium alloy Ti-6242Si subjected to low cycle fatigue. Cyclic plastic strain in the alloy resulted in dislocation pile-ups in the primary alpha grains, nucleated at the boundaries between the primary alpha and the two-phase regions. These two phase regions provided a barrier to slip transfer between primary alpha grains. We suggest that crack nucleation occurred near the basal plane of primary alpha grains by the subsurface double-ended pile-up mechanism first conceived by Tanaka and Mura. Superjogs on the basal dislocations were observed near the crack nucleation location. The two phase regions showed direct transmission of dislocations between secondary alpha plates, transmitted through the beta ligaments as , which then decompose into dislocation networks in the beta. The beta ligaments themselves do not appear to form an especially impenetrable barrier to slip, in agreement with the micropillar and crystal plasticity investigations of Zhang et al

    Estimating terrestrial uranium and thorium by antineutrino flux measurements

    Full text link
    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This research report describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a mid-continental and a mid-oceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth.Comment: 15 pages, 2 figure

    Lens magnification by CL0024+1654 in the U and R band

    Get PDF
    [ABRIDGED] We estimate the total mass distribution of the galaxy cluster CL0024+1654 from the measured source depletion due to lens magnification in the R band. Within a radius of 0.54Mpc/h, a total projected mass of (8.1+/-3.2)*10^14 M_sol/h (EdS) is measured, which corresponds to a mass- to-light ratio of M/L(B)=470+/-180. We compute the luminosity function of CL0024+1654 in order to estimate contamination of the background source counts from cluster galaxies. Three different magnification-based reconstruction methods are employed using both local and non-local techniques. We have modified the standard single power-law slope number count theory to incorporate a break and applied this to our observations. Fitting analytical magnification profiles of different cluster models to the observed number counts, we find that the cluster is best described either by a NFW model with scale radius r_s=334+/-191 kpc/h and normalisation kappa_s=0.23+/-0.08 or a power-law profile with slope xi=0.61+/-0.11, central surface mass density kappa_0=1.52+/-0.20 and assuming a core radius of r_core=35 kpc/h. The NFW model predicts that the cumulative projected mass contained within a radius R scales as M(<R)=2.9*10^14*(R/1')^[1.3-0.5lg (R/1')] M_sol/h. Finally, we have exploited the fact that flux magnification effectively enables us to probe deeper than the physical limiting magnitude of our observations in searching for a change of slope in the U band number counts. We rule out both a total flattening of the counts with a break up to U_AB<=26.6 and a change of slope, reported by some studies, from dlog N/dm=0.4->0.15 up to U_AB<=26.4 with 95% confidence.Comment: 19 pages, 12 figures, submitted to A&A. New version includes more robust U band break analysis and contamination estimates, plus new plot

    Cassiopeia A: dust factory revealed via submillimetre polarimetry

    Full text link
    If Type-II supernovae - the evolutionary end points of short-lived, massive stars - produce a significant quantity of dust (>0.1 M_sun) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type-II supernovae. In this paper we present new data which show that the submm emission from Cas A is polarised at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarised submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarisation in this way and so we attribute the excess polarised submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarised and unpolarised dust emission in the north of the remnant, where there is no contamination from foreground molecular clouds. The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which, coupled with the brief timescale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where f_pol=2-7%), or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.Comment: In press at MNRAS, 10 pages, print in colou

    Hanohano:A Deep Ocean Antineutrino Observatory

    Full text link
    This paper presents the science potential of a deep ocean antineutrino observatory being developed at Hawaii and elsewhere. The observatory design allows for relocation from one site to another. Positioning the observaory some 60 km distant from a nuclear reactor complex enables preecision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and theta_13. At a mid-Pacific location, the observatory measures the flux of uranium and thorium decay series antineutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subequent deployment at another mid-ocean location would test lateral homogeneity of uranium and thorium in earth's mantle. These measurements have significance for earth energy studies.Comment: Poster presented at ICHEP08, Philadelphia, USA, July 2008. 3 pages. PD
    • …
    corecore