72 research outputs found

    Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization

    Get PDF
    Supramolecular chemistry exploits multiple weak intermolecular interactions to assemble nano-sized molecular architectures, providing new possibilities for (transition metal) catalyst development. In this Perspective we focus on the application of such weak (directional) interactions between a substrate molecule and a (bifunctional) catalyst for structural preorganization prior to the catalytic reaction. As we discuss, such effects together with the confinement properties of the nano-space of the 'active sites' play a crucial role for the exceptional selectivities and activities of natural enzymes. We will elaborate on the application of such supramolecular strategy to the more traditional transition-metal catalysis, and we will compare it with the traditional substrate preorganization methods. Subsequently, literature examples of such bifunctional catalyst systems will be described in which the function of weak interactions was carefully designed a priori, as well as, the serendipitously found catalysts in which the presence of supramolecular effects was recognized post factum. The discussed examples demonstrate the power of the strategy for the control of selectivity in various types of metal catalyzed reactions, and the observation of the serendipitous findings can help to generate new leads for more efficient catalyst design

    Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme

    Get PDF
    C–H bonds are ubiquitous structural units of organic molecules. Although these bonds are generally considered to be chemically inert, the recent emergence of methods for C–H functionalization promises to transform the way synthetic chemistry is performed. The intermolecular amination of C–H bonds represents a particularly desirable and challenging transformation for which no efficient, highly selective, and renewable catalysts exist. Here we report the directed evolution of an iron-containing enzymatic catalyst—based on a cytochrome P450 monooxygenase—for the highly enantioselective intermolecular amination of benzylic C–H bonds. The biocatalyst is capable of up to 1,300 turnovers, exhibits excellent enantioselectivities, and provides access to valuable benzylic amines. Iron complexes are generally poor catalysts for C–H amination: in this catalyst, the enzyme's protein framework confers activity on an otherwise unreactive iron-haem cofactor

    Synthesis and evaluation of thiosemicarbazones functionalized with furyl moieties as new chemosensors for anion recognition

    Get PDF
    A family of heterocyclic thiosemicarbazone dyes (3a-f and 4) containing furyl groups were synthesized in good yields, characterized and their response in acetonitrile in the presence of selected anions was studied. Acetonitrile solutions of 3a-f and 4 show absorption bands in the 335-396 nm range which are modulated by the electron donor or acceptor strength of the heterocyclic systems appended to the thiosemicarbazone moiety. Fluoride, chloride, bromide, iodide, dihydrogen phosphate, hydrogen sulphate, nitrate, acetate and cyanide anions, were used in recognition studies. From these anions, only sensing features were seen for fluoride, cyanide, acetate and dihydrogen phosphate. Two clearly different chromo-fluorogenic behaviours were observed, (i) a small shift of the absorption band due to the coordination of the anions with the thiourea protons and (ii) the appearance of a new red shifted band due to deprotonation. For the latter effect, a change in the colour solution from pale yellow to purple was observed. Fluorescence studies were also in agreement with the different effects observed in the UV/Vis titrations. In this case, hydrogen bonding interactions were visible through the enhancement of the emission band, whereas deprotonation induced the appearance of a new red-shifted emission. Logarithms of stability constants for the two processes (complex formation + deprotonation) for receptors 3a-f in the presence of fluoride and acetate anions were determined from spectrophotometric titrations using the HypSpec V1.1.18 program. Semi-empirical calculations to evaluate the hydrogen-donating ability of the receptors and a prospective electrochemical characterization of compound 3b in the presence of fluoride were also performed.Fundação para a CiĂȘncia e a Tecnologia (FCT), AcçÔes Integradas Luso-espanholas/CRUP, Generalitat Valenciana

    Synthesis and prospective study of the use of thiophene thiosemicarbazones as signalling scaffolding for the recognition of anions

    Get PDF
    A family of phenyl-thiosemicarbazone dyes have been prepared and their interactions with anions monitorized via UV-Vis, fluorescence and 1H NMR titrations. Additionally quantum chemical calculations and electrochemical studies completed the studies carried out. The phenyl-thiosemicarbazone dyes show a modulation of their hydrogen-bonding and electron-donating capabilities as a function of the chemical groups attached and display two different chromo-fluorogenic responses towards anions in acetonitrile solutions. The more basic anions fluoride and cyanide are able to induce the dual coordination-deprotonation processes for all the receptors studied, whereas acetate only interacts with receptors 2, 3, 6, 7, 8, 9 and dihydrogen phosphate displays sensing features only with the more acidic receptors 6. Coordinative hydrogen bonding interactions is indicated by a small bathochromic shift, whilst deprotonation results in the appearance of a new band at ca. 400-450 nm corresponding to a colour change from colourless-yellow to yellow-red depending on the receptor. In the emission fluorescence, hydrogen bonding interaction is visible through the enhancement of the emission band, whereas deprotonation induced the growth of a new red-shifted emission. The chromo-fluorogenic behaviour could be explained on the basis of the deprotonation tendency of the binding sites and the proton affinity of the anions. PM3 and 1H NMR calculations are in agreement with the existence of the dual complexation-deprotonation process, whereas both studies are in discrepancy in relation to which is the proton involved in the deprotonation. Electrochemical studies carried with receptor 3 showed a quite complex redox behaviour and anodic shifts of the reduction peaks in the presence of the basic anions fluoride, cyanide and acetate.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Supramolecular Control of Selectivity in Hydroformylation of Vinyl Arenes: Easy Access to Valuable ÎČ-​Aldehyde Intermediates

    No full text
    Go against the flow! A rationally designed regioselective hydroformylation catalyst, [Rh/L], in which noncovalent ligand–substrate interactions allow the unprecedented reversal of selectivity from the typical α‐aldehyde to the otherwise unfavored product ÎČ‐aldehyde, is reported. This catalytic system opens up novel and sustainable synthetic pathways to important intermediates for the fine‐chemicals industry
    • 

    corecore