543 research outputs found

    Nonlinear stage of the Benjamin-Feir instability: Three-dimensional coherent structures and rogue waves

    Full text link
    A specific, genuinely three-dimensional mechanism of rogue wave formation, in a late stage of the modulational instability of a perturbed Stokes deep-water wave, is recognized through numerical experiments. The simulations are based on fully nonlinear equations describing weakly three-dimensional potential flows of an ideal fluid with a free surface in terms of conformal variables. Spontaneous formation of zigzag patterns for wave amplitude is observed in a nonlinear stage of the instability. If initial wave steepness is sufficiently high (ka>0.06ka>0.06), these coherent structures produce rogue waves. The most tall waves appear in ``turns'' of the zigzags. For ka<0.06ka<0.06, the structures decay typically without formation of steep waves.Comment: 11 pages, 7 figures, submitted to PR

    "Breathing" rogue wave observed in numerical experiment

    Full text link
    Numerical simulations of the recently derived fully nonlinear equations of motion for weakly three-dimensional water waves [V.P. Ruban, Phys. Rev. E {\bf 71}, 055303(R) (2005)] with quasi-random initial conditions are reported, which show the spontaneous formation of a single extreme wave on the deep water. This rogue wave behaves in an oscillating manner and exists for a relatively long time (many wave periods) without significant change of its maximal amplitude.Comment: 6 pages, 12 figure

    Two-dimensional nonstationary model of the propagation of an electron beam in a vacuum

    Get PDF
    A two dimensional nonstationary model of the propagation of a relativistic electron beam injected into a vacuum is considered. Collision effects are ignored and there are no external fields. Two types of the electron current propagation are shown from the computer simulation of the Maxwell-Vlasov equations

    Quasi-planar steep water waves

    Full text link
    A new description for highly nonlinear potential water waves is suggested, where weak 3D effects are included as small corrections to exact 2D equations written in conformal variables. Contrary to the traditional approach, a small parameter in this theory is not the surface slope, but it is the ratio of a typical wave length to a large transversal scale along the second horizontal coordinate. A first-order correction for the Hamiltonian functional is calculated, and the corresponding equations of motion are derived for steep water waves over an arbitrary inhomogeneous quasi-1D bottom profile.Comment: revtex4, 4 pages, no figure

    Effect of rhenium on the structure and properties of the weld metal of a molybdenum alloy

    Get PDF
    The structure and properties of welds made in molybdenum alloy VM-1 as a function of rhenium concentrations in the weld metal were studied. Rhenium was introduced into the weld using rhenium wire and tape or wires of Mo-47Re and Mo-52Re alloys. The properties of the weld metal were studied by means of metallographic techniques, electron microscopy, X-ray analysis, and autoradiography. The plasticity of the weld metal sharply was found to increase with increasing concentration of rhenium up to 50%. During welding, a decarburization process was observed which was more pronounced at higher concentrations of rhenium
    corecore