## NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

# TWO-DIMENSIONAL NONSTATIONARY MOCEL OF THE PROPAGATION OF AN ELECTRON BEAM IN A VACUUM 

S.L. Ginzburg and V.F. D'yacherko

> Translation of "Dvumernaya nestatsionarnaya model' rasprostraneniya elektronnogo puchka v vakuume," Academy of
> Sciences USSR, Institute of Applied Mathematics imeni M.V. Keldysh, Moscow, Preprint No. 51, 1979, pp 1-22

```
(NASA-TM-75693) THO-DIMENSIONAL N80-10435
NONSTATIONARY HODEL OF THE PROPAGATION OF AN
ELECTRON BEAM IN A VACUUM (National
Aeconautics and Space Administration) 14 p Inclas
HC A02/MF A01 CSCL 09C G3/33 45946
```



```
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON D.C. }2054
    OCTOBER 1979
```

| 1. Repoil No. <br> NASA TM-75693 <br> 2. Covernment Accossion No. | 3. Kecipiont', Corolog t |
| :---: | :---: |
| 4. firle ond subinte TWO-DIMENSIONAL NONSTATIONARY MODEL OF THE PRCPAGATION CF AN ELECTRON BEAM IN A VACUUM | 5. Repori Date October 1979 |
|  | 6. Perlorming Diponization Cade |
| 7. Author(s) <br> S.L. Girzburg and V.F. D'yachenko, USSR Academy of Sciences, Keldysh Irstitute of Applied Matrematics, Moscow | 日. Partarming Organization Radnti No. |
|  | 10. Work Unit No. |
|  | 11. Contract or Gront No. |
| 9. Perlorming Orgonization Nome ond Addrass | WASw-3199 |
| Leo Kanner Associates Redwood City, California 94063 | 13. Type of Report and Poriod Covared |
|  |  |
| 12. Sponsoring Agoney Name and Address <br> National Aercnautics and Space Administration, Washington, D.C. 20546 |  |
|  | 14. Sponsoting Agoney Code |

15. Supplementary Notes

Translation of "Dvumernaya nestatsionarraya model' rasprostraneniya elektronnogo puchka $v$ vakuume," Academy of Sciences USSR, Institute of Applied Mathematics imeni M.V. Keldysh, Moscow, Preprint No. 51, 1979, pp 1-22
16. Abstroct

A two-dimensional nonstationary model of the propagation of a relativistic electron beam injected into vacuum is considered. Collision effects are ignored. There are no external fields. Results obtained by computer simulation of the Maxwell-Vlasov equations showed there are two types of the electron current propagation. If the injected current is less than some critical value, the beam remains regular, laminar. Otherwise, surface reflecting electrons arise. Part of them return; the rest leave along a cone.

| 17. Key Words (Sciected by Author(s)) |  | 18. Distribution Statement <br> Unclassified-Unlimited |  |
| :---: | :---: | :---: | :---: |
| 19. Seculity Elassil. (at this eepart) Unclassified | 2. Securiy Clossil. (of this paze) Unclassified | 21. No. of Poges | 22. Priee |

TWO-DIMENSIONAL NONSTATIONARY MODEL OF THE PROPAGATION OF AN ELECTRCN BEAM IN A VACUUM
S.L. Ginzburg and V.F. D'yachenkc

USSR Academy of Sciences, Keldy h instituie of Applied Mathematics. oscow

1. The dynamics of a relativistic electron beam in its inherent /4* $^{*}$ electromagretic field, injected into vacuum, are considered, without taking account of particle collisions, within the framework of the Maxwell-Vlesov equations [1]

$$
\begin{align*}
& \frac{1}{c} \frac{\partial \bar{E}}{\partial E}-\operatorname{rot} \bar{H}+\frac{4 \pi}{c} \bar{j}=0, \quad \operatorname{div} \bar{E}=-4 \pi e n  \tag{I}\\
& \frac{1}{c} \frac{\partial \bar{H}}{\partial t}+\operatorname{rot} \bar{E}=0, \quad \operatorname{div} \bar{H}=0 \\
& \frac{\partial f}{\partial t}+\bar{v} \frac{\partial f}{\partial \bar{x}}-e\left(\bar{E}+\frac{1}{c}[\bar{U} \times \bar{H}]\right) \frac{\partial f}{\partial \bar{f}}=0 \tag{2}
\end{align*}
$$

Here, $\bar{E}(t, \bar{x}), \bar{H}(t, \bar{x})$ are the electric and magnetic fields, $f(t, \bar{x}, \bar{p})$ is the electron pulse distribution function, $\bar{p}, \bar{v}=W \bar{p}$ is the velocity, $W(\bar{p})=\sqrt{m^{2} c^{4}+c^{2} \bar{p}^{2}}$ is the electron energy, $m$ is its rest mass, $e$ is the elementary charge, $c$ is the velocity of light. The electron density $n(t, \bar{x})$ and currert density $\bar{j}(t, \bar{x})$ are expressed by the integrals over impulse space

$$
\begin{equation*}
n=\int f d^{3} p, \quad \bar{J}=-e \int \hat{v} f d^{3} p \tag{3}
\end{equation*}
$$

The electrons are injected from a circular plane cathode, of radius L along the normal to it, with erergy
and procucirg a current

$$
\begin{equation*}
W_{0}=\gamma m c^{2} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
I_{0}=\sigma \frac{m c^{3}}{4 e} \tag{5}
\end{equation*}
$$

the density of which

$$
\begin{equation*}
j_{0}=\sigma \frac{m c^{3}}{4 \pi e L^{2}} \tag{6}
\end{equation*}
$$

*Numbers in the margin indicate pagination in the foreign text.
is constant ( $\gamma$ and $\sigma$ are assigned constants).

There are no external fields. The plane which contains the cathode is assumed to be equipotential and, consequently, here, the tangential component of the electric field equals zero.

In cylindrical coordinates $r, z, \psi$, where $z=0$ is the plane of the 15 cathode, and $r=0$ is the axis of symmetry, we obtain two dimensional problem (1)-(3), with $\partial / \partial \phi \equiv 0$, relative to $E_{r}(t, r, z), E_{z}(t, r, z), H(t, r, z)$ and $f=\delta\left(P_{\phi}\right) F\left(t, r, z, P_{r}, P_{z}\right)$, with initial data at $t=0$,

$$
\begin{equation*}
E_{r}=E_{z}=H_{\varphi}=F=0, \tag{7}
\end{equation*}
$$

with the boundary conditions at $z=0$

$$
e F=\left\{\begin{array}{cc}
j \delta\left(P_{r}\right) \delta\left(W-W_{0}\right) & \text { at } r<L, P_{2}>0 \\
0 & \text { at } r>L, P_{z}>0  \tag{9}\\
E_{r}=0 &
\end{array}\right.
$$

and with intrinsic conditions on the $r=0$ axis

$$
\begin{equation*}
E_{r}=H_{\varphi}=0, \quad F\left(P_{r}\right)=F\left(-P_{r}\right) \tag{10}
\end{equation*}
$$

The following two dimensionless parameters in the problem thus formulated prove to be decisive

$$
\begin{equation*}
\gamma=\frac{W_{0}}{m c^{2}}, \quad \sigma=\frac{4 e}{m c^{2}}, I_{0}=\frac{4 \pi L^{2}}{m L^{3}} j_{0} \tag{11}
\end{equation*}
$$

the injected electron energy and current.
2. The problem formulated was solved by computer. To integrate Vlascv equation (2), a macroparticle mociel was used. The latter consists of presentation of the electron gas as a discrete set of macroparticles, each of which is a group of electrons with the same coopdinates and impulse. Cf course, the electron motion is described by the equations

$$
\begin{equation*}
\frac{d \bar{X}}{d t}=\bar{V}, \frac{d \bar{\theta}}{d t}=-e\left(\bar{E}+\frac{1}{c}(\vec{v} \times \vec{B}) .\right. \tag{12}
\end{equation*}
$$

The electron density is calculated by the formula

$$
\begin{equation*}
\left.n(t, \bar{x})=\sum_{m}^{5} N_{m} \hat{\delta} \cdot \bar{x}_{m}(t)-\hat{y}\right) \tag{13}
\end{equation*}
$$

where summing is carried out over all macroparticles, and $\hat{o}$ is a deltoid function, with a carrier on the order of the dimensions of the calculation cell. The current density is calculated similarly.

The calculation region is a cylinder $0<r<r_{1}, 0<z<z_{1}$, on the outer boundarits of which the following conditions are laid down

$$
\begin{array}{ll}
E_{r}-H_{\varphi}=0 & \text { at } \quad R=z, \\
E_{z}+H_{\varphi}=0 & \text { at } \quad r=r_{1}, \tag{14}
\end{array}
$$

which simulates the atsence of electromagnetic radiation from the cutside.

Electrons leaving the bourdaries $z=0, z=z_{1}, r=r_{1}$, are excluded from the calculation, and those striking the $r=0$ axis are reflected from it, in accordance with (10). Quite large values of $r_{1}, z_{1}$ are chosen, so as not to affect the result.


Fig. l. Current at $\gamma=2, \quad \sigma=0.2$.
3. We proceed to description of the calculation results. First and foremost, we note that, in all (with respect to $\gamma, \sigma$ ) versicrs, practically steady state behavior is observed. We dwell on transient details below, and we now give the general characteristics of these behaviors.

The two schemes of movement presented in Figs. 1 and 2 are typical. The current lines for two versions, which differ in the magnitude of the injected current ( $\sigma=0.2$ and $\sigma=2$, respectively), with the same energy $\gamma=2$, are presented here.

In: the first case, we have a uniform, expandirig beam, propagatirg along the $z$ axis. In the second case, the movement pattern is completely different. There is an envelope in the family of trajectories, the $z=z_{*}(r)$ surface, which reflects electrons ("pseudocathode"), and a noruniform, multivelocity flow.


Fig. 2. Current at $\gamma=2, \sigma=2$

The electrons flow past the $r / z \sim l$ cone, and a substantial fraction of them returns to the cathode.
4. A priori, it is clear that conditions are produced in the pseudocathode behavior, for the development of the known two beam irstability [2]. There are two counterbeams, forward and reflected, in which tree density of the fluxes is high in the reversal region and, corsequently, high frequercies should be excited.

On the other hand, there are stabilizing factors, steady state injection from the nearby cathode, constant current drift and a decrease in density with distance from the axis.

As the calculation results show, the interaction of all these factors results in an cscillatory process, the amplitude of which is small, and the average state corresponds to the steady state behavior pointed out above.

The transient effects intensify with increase in current. Therefore, we turn tc the version with $\gamma=2, \sigma=4$ to describe them. $E_{z}(z)$ curves on the $r=0$ axis at differert moments of time are presented in Fig. 3. The points where $E_{z}$ passes through zero correspond to the pseudocathode iccation $z_{*} . E_{z}$ vs. time is shown in Fig. 4, at a point located on the $r=0$ axis near the pseudocathode ( $z \sim 0.25 L$ ), for the same vercion, $\gamma=2, \sigma=4$. In this area, because of the large ficid graciert in tre direction of movement of its profile, the amplituce cf the oscillations is comparable to the size of the field itself.


Fig. 3. $E_{z}$ profiles on axis at $\gamma=2, \sigma=4$.


Fig.
$\gamma=2$,
$\sigma=4$.$E_{z}(t)$ in pseudccathode area, at

As a result of the pseudocathode pulsations, a small fraction of the electrons periodically prove to be above it, and they are dumped in the space beyond the cathode.

These pulsations give rise to transient pheromena in the entire flow. Electrons which reach the pseudocathode along one current line acquire varjous velocities upon reflection from It and, ther, movirg practically rectilinearly, they are located on curves, the shapes of which are similar to the jet from an oscillating hose. The movement of such jets basically determines the structure of the weak turbulent flow which arises.

For this reason, in descripticn of the steady state characteristics of the behaviors by means of the current lines, we have representec the
latter provisionally in the figures, by a dashed line which shows the average movement.

It can be said that the transjent nature of the process is reduced to the transient nature of the pseudocathode.


Fig. 5. Flow at $\gamma=2, \sigma=0.5$


Fig. 6. $E_{2}$ and $P$ proys]es on axis, at $\gamma \underline{\underline{\underline{2}}} 2, \sigma=0.5$
5. We know dwell in greater detail on the dependence of the average steady state properties of the flow on current $o$. We consider versions with injected electron energies $\gamma=2$.

The results of calculation of the version with $\sigma=0.5$ are presented in Fig. 5. Aithough, the trajectories intersect in a narrow boundary layer, on the whoie, the team remains uniform, with prectically constant current density over the cross section, which rises slightly at the boundary itself. Compared with the $\sigma=0.2$ version (Fig. 1), the rate of broadening of the beam has increased appreciably.

Curves of the $E_{z}(t)$ and pulse $\mathrm{P}_{z}(z)$ fields along the $z$ axis are giver in Fig. 6, for the same version $\sigma=0.5$. The point where $E_{z}=0, P_{z}=m i n$ corresponds to the minimum potential. Upon passing it, the flow is accelerated. However, electron energy $W\left(D_{z}\right)$ remains less thar the initial $W_{0}=\gamma m c^{2}$.

On the same terms, the variant with $0=0.65$ is shown in Figs. 7 and 8. Uniformity is preservea only in the


Fig. 7. Flow at $\gamma=2, \sigma=0.65$


Fig. 8. $E_{2}$ and $F_{z}$ profiles on axis, at $\gamma=2, \sigma=0,65$.
axial region. A pseudocathode forms in the outer layers. The outer boundary of the injected beam (currer.t line V) proves to be inside the flow. Eighty percent of the current moves outside it.

The version $\sigma=0.75$ is presented in Fis. 9. The pseudccathode has formed completely and reached the axis. The outer layer of the beam becomes the inner one (linc V). The flow "was turned inside cut". The main portion of the current, $84 \%$, flows in a cone between lines II and V. A negligible fraction of the current ( $24 \%$ ) leaks through the pseudocathode in a transient marner. A reverse current develops.

As we see, a qualitative rearrangemerit of the structure and shape of the flow occurs over a small interval of change of $\sigma$ from 0.5 to 0.75 . A critical current value can be spoken of, in this case, $\sigma_{c r}{ }^{i 0} 6$.

With further increase in
current, the flow pattern does not change qualitatively. The pseudocathode subsides and becomes flatter. The reverse current fraction increases. At $\sigma=2$ (Fig. 2) $34 \%$ of the electrons return on the $z=0$ plane and, at $\sigma=4,56 \%$.

In the outer zone, the flow retains the shape of a cone witr the same angle $45^{\circ}$. Of course, the fraction of the current traveing in


Fig. 9. Flow at $\gamma=2, \sigma=0.75$.


Fig. 10.

It decreases.
6. We have reported the caloulation results of versione with injection energy $\gamma=2$. At other $\gamma$, the quantitative characteristics of the solution are different, of course, but all the effects described are preserved. Fig. 10 gives an idea of the presence of the pseudocathoce and its height $z_{\text {" }}$ (at $r=0$ ), in versions with other $\gamma$.

Specific information on $z_{k}$ and $\sigma_{c r}$ vs. $\gamma$ also can be obtained, by means of analytic estimates.
7. In the limit, as $\sigma+\infty$, the pseudocathode approaches the cathode without restriction, $z_{w} / L \rightarrow 0$. But, with $z_{\#} \leqslant<L$, the finite dimensions of the cathode should not affect the processes in the axial region. Therefore, if the increase of $\sigma$ occurs through an increase in cathode radius $L$, with the density of the injected current preserved, for determination of the asymptotes of the solution in the axial zone, a unidimensional version of our problem, $\partial / \partial r \equiv 0$, which corresponds to an infinite cathode, can be used.

This problem was investigated in 3 . The steady state version of it hes an analytical solution, which can be writter in the form

$$
\begin{align*}
& \bullet F=j \delta(A) \delta\left(W-\gamma m c^{2}+e f^{2} f_{p} d e\right)  \tag{15}\\
& L e E_{s}=2 \sqrt{6 m c P_{2}}, \quad E_{r}=H_{\varphi}=0 \tag{16}
\end{align*}
$$

in which the relationship between $W\left(P_{z}\right)$ and $z$ is determined, with $0<z<z_{n}$, by the integrel

$$
\begin{equation*}
\sqrt{\sigma} \frac{z_{y}-z^{7}}{L}=\frac{1}{2} \int_{1}^{N / m c^{2}}\left(x^{2}-y\right)^{-x} d x \tag{17}
\end{equation*}
$$

and $z_{n}$ itself

$$
\begin{equation*}
\sqrt{\sigma} Z_{L}^{Z}=\frac{1}{2} \int_{0}^{r}\left(x^{2}-1\right)^{-x} d x \tag{18}
\end{equation*}
$$

Precisely these values for the corresponding $\gamma$ are represented in Fig. 10 by a dashed line. The asymptote is expressed completely cleeriy.
Q. Simple measoning permits an estimate of the critical current $\sigma_{c r}(\gamma)$ to te obtained, at which a change in type of behavicr cocuro.

We fird the conditions of the existence of a steady etate, singie velocity flow, unbounded along the 2 axis.

The motion of ar. electron in a steady etate field with potential $\phi, \nabla_{\phi}=-E$, occurs witr retention of its total en, rgy, $W-e_{\phi}$ const. Since, at the time of injection, all the electrons have the aric energy $W_{0}=\gamma m c^{2}$, and the cathode plane is equipotential, $\left.\phi\right|_{z=0}=\phi_{0}$,

$$
\begin{equation*}
W-\mathrm{e} \varphi=W_{0}-e \varphi_{0}, W \geqslant m c^{2} \tag{19}
\end{equation*}
$$

for ali electrons in the cntire flow.

The potential satisfies the Poisson equation

$$
\begin{equation*}
\Delta \varphi=4 \pi e n \tag{20}
\end{equation*}
$$

and it is finite at infinity.

Hor a ingle velocity flcw, the current density

$$
\begin{equation*}
j=\text { env. } \tag{21}
\end{equation*}
$$

By virtue of the assumed bourdednass of the beam with respect to $r$, at each $z$, evidentiy, $\phi+\phi_{0}$ as $r+\infty$. This gives a basis for preaenting the radial portion of the Laplace operator in the form

$$
\begin{equation*}
\frac{1}{r} \frac{1}{m} r \frac{\partial \varphi}{w^{2}}=\alpha \frac{r-\varphi}{R^{T}} \tag{22}
\end{equation*}
$$

where $a$ is a dimensionloss, indetermarate coeificient, and $R$ is the effective radius of the beam, such that

$$
\begin{equation*}
\pi R^{2} j=S_{0}=\frac{m e^{2}}{k_{e}} \sigma \tag{23}
\end{equation*}
$$

is the total current.

With (19), (21)-(23) taken into consideration, we rewrite equation (20) in the form

$$
\begin{equation*}
R^{2} \frac{\gamma^{2} W}{\delta E^{2}}-\frac{4 \varepsilon I_{2}}{V}+\alpha\left(W-W_{0}\right) \tag{24}
\end{equation*}
$$

On the assumption that $R / z$ <const, it is easy to determine that a necessary condition of the existence of bcunded solution of equation (24), as $z \rightarrow \infty$, is the possibility of the reduction of its right side to zerc. Otherwise, either $W+\infty$, or the solution exists only in a finite interval, since $W$ cannot be less thar. $\mathrm{mc}^{2}$.

By making the right side of (24) equal tc zerc, with $f 1 \times \mathrm{cd} I_{0}$ and $a$, we obtain an equation for $W$. Simple analysis shows trat it has a reel rcot, only in the ovent

$$
\begin{equation*}
\sigma \leqslant \alpha\left(\gamma^{t / 2}-1\right)^{t / 2} \tag{25}
\end{equation*}
$$

This formuls gives ar estimate of the value of the critical cur-
 results (Fig. 10). In particusar, this justifies the "simpifcity" of
the reasoning used.
9. The authors thank V.S. Imehenitskiy, K.V. Krasnobayev, O.V. Lckutsiyevskiy and K.V. Khodatajev, the initiators of this work ard constart farticipants in fruitrul diectissions, as well as N.M. Khokhlova and Ye.V. Shakhanova for essistance in the work.

## fEFERENCES

1. Davidson, R., Teoriya zaryazhennoy plaziny [Charged Plasma Theory], 122

Mir Press, Moscow, 1978.
2. Briggs, R., Dvukhpuchkovaya neustoychivost' [Two Beam Instability], Mir Fress, Moscow, 1974.
3. Poukey, $u . W ., N$. Rostoker, "One dimensioral model of relativistic electron beam propagation," Plasma Physics 13/10, (1971).

