ΝΟΤΙCΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA TECHNICAL MEMORANDUM

О NASA TM-75693

TWO-DIMENSIONAL NONSTATIONARY MODEL OF THE PROPAGATION OF AN ELECTRON BEAM IN A VACUUM

S.L. Ginzburg and V.F. D'yachenko

Translation of "Dvumernaya nestatsionarnaya model' rasprostraneniya elektronnogo puchka v vakuume," Academy of Sciences USSR, Institute of Applied Mathematics imeni M.V. Keldysh, Moscow, Preprint No. 51, 1979, pp 1-22

(NASA-TM-75693)TWO-DIMENSIONALN80-10435NONSTATIONARYMODEL OF THE PROPAGATION OF ANELECTRONBEAM IN A VACUUM (National
Aeronautics and Space Administration)14 pHC A02/MF A01Unclas

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON D.C. 20546 OCTOBER 1979

STANDARD TITLE PAGE

,

			The second	
1. Report No. NASA TM-75693	2. Government Acce	ssion No.	3. Recipient's Catalo	g No.
4. fitle and Sublitle TWO-DIMENSIONAL NONSTA- TIONARY MODEL OF THE PRCPAGATION CF AN ELECTRON BEAM IN A VACUUM		ONSTA-	S. Report Date	
		ON OF AN L	October 197	
			6. Performing Digani	zotion Code
⁷ Author(s) S.L. Ginzburg and V.F. D'yache Academy of Sciences, Keldysh I of Applied Mathematics, Moscow		nko, USSR	8. Performing Organization Report No.	
			10. Work Unit No.	
		1	1. Contract or Grant	No.
9. Performing Organization Name and Address Leo Kanner Associates			NASw-3199	
		p p	3. Type of Report and Period Covered	
Redwood City, Calif	ornia 94063		.	
2. Sponsoring Agency Name and Addre			Franslation	
National Aeronautic	s and Space	Adminis-	4. Sponsoring Agenc	v Code
tration, Washington, D.C. 20546			 aponsoring Agenc 	,
A two-dimensional n a relativistic elec considered. Collis external fields. R the Maxwell-Vlasov the electron curren less than some crit laminar. Otherwise Part of them return	tron beam in ion effects esults obtained equations shot t propagation ical value, , surface read	njected int s are ignor ined by com nowed there on. If the the beam r eflecting e	co vacuum in red. There nputer simu e are two t e injected remains regu electrons a	are no lation of ypes of current is ular,
17. Key Words (Sciected by Author(s))	18. Distribution Stat Unclassi	lfied-Unlim:	ited
19. Security Classif. (of this report)			1	· · · · · · · · · · · · · · · · · · ·
	J. D. Security Classi	f. (of this page)	21. No. of Pages	22. Price
Unclassified		f. (of this page)	21. No. of Pages	22. Price

.

1

ŕ

•

TWO-DIMENSIONAL NONSTATIONARY MODEL OF THE PROPAGATION OF AN ELECTRON BEAM IN A VACUUM

S.L. Ginzburg and V.F. D'yachenko USSR Academy of Sciences, Keldy h Institute of Applied Mathematics Coscow

1. The dynamics of a relativistic electron beam in its inherent <u>/4*</u> electromagnetic field, injected into vacuum, are considered, without taking account of particle collisions, within the framework of the Maxwell-Vlasov equations [1]

$$\frac{1}{c} \frac{\partial \vec{E}}{\partial t} - rot \vec{H} + \frac{4\pi}{c} \vec{j} = 0, \quad div \vec{E} = -4\pi en \qquad (1)$$

$$\frac{1}{c} \frac{\partial \vec{H}}{\partial t} + rot \vec{E} = 0, \quad div \vec{H} = 0$$

$$\frac{\partial f}{\partial t} + \vec{v} \frac{\partial f}{\partial x} - e \left(\vec{E} + \frac{1}{c} [\vec{v} \times \vec{H}]\right) \frac{\partial f}{\partial p} = 0 \qquad (2)$$

Here, $\overline{E}(t,\overline{x})$, $\overline{H}(t,\overline{x})$ are the electric and magnetic fields, $f(t,\overline{x},\overline{p})$ is the electron pulse distribution function, \overline{p} , $\overline{v}=W_{\overline{p}}$ is the velocity, $W(\overline{p}) = \sqrt{m^2c^4+c^2\overline{p}^2}$ is the electron energy, m is its rest mass, e is the elementary charge, c is the velocity of light. The electron density $n(t,\overline{x})$ and current density $\overline{j}(t,\overline{x})$ are expressed by the integrals over impulse space

$$n = \int f d^3 p , \quad \overline{J} = -e \int \overline{v} f d^3 p \tag{3}$$

The electrons are injected from a circular plane cathode, of radius L along the normal to it, with energy

 $W_0 = \gamma mc^2$

(4)

and producing a current

$$I_o = 6 \frac{mc^3}{4e} \tag{5}$$

the density of which

$$j_o = \sigma \frac{mc^3}{4\pi eL^2} \tag{6}$$

*Numbers in the margin indicate pagination in the foreign text.

is constant (γ and σ are assigned constants).

There are no external fields. The plane which contains the cathode is assumed to be equipotential and, consequently, here, the tangential component of the electric field equals zero.

In cylindrical coordinates r, z, ψ , where z = 0 is the plane of the <u>/5</u> cathode, and r = 0 is the axis of symmetry, we obtain two dimensional problem (1)-(3), with $\partial/\partial\phi\equiv 0$, relative to $E_r(t,r,z)$, $E_z(t,r,z)$, H (t,r,z) and f= $\delta(P_{\phi})F(t,r,z,P_r,P_z)$, with initial data at t=0,

$$F_r = E_z = H_\varphi = F = 0 , \qquad (7)$$

with the boundary conditions at z=0

$$eF = \begin{cases} j_{\bullet} \delta(\rho_{\bullet}) \delta(W-W_{\bullet}) & \text{at } r < L, \rho_{\bullet} > 0 \\ 0 & \text{at } r > L, \rho_{\bullet} > 0 \\ E_{\mu} = 0 \end{cases}$$
(8)

and with intrinsic conditions on the r=0 axis

$$E_{\mu} = H_{\varphi} = 0 \quad , \quad F(P_{\mu}) = F(-P_{\mu}) \tag{10}$$

The following two dimensionless parameters in the problem thus formulated prove to be decisive

$$\chi = \frac{W_o}{mc^2} , \quad \sigma = \frac{4e}{mc}, \quad I_o = \frac{4\pi e L^2}{mc^2} J_o \qquad (11)$$

the injected electron energy and current.

2. The problem formulated was solved by computer. To integrate Vlasov equation (2), a macroparticle model was used. The latter consists of presentation of the electron gas as a discrete set of macroparticles, each of which is a group of electrons with the same coordinates and impulse. Of course, the electron motion is described by the equations

$$\frac{d\bar{x}}{dt} = \bar{v} , \quad \frac{d\bar{p}}{dt} = -e\left(\bar{E} + \frac{i}{c}(\bar{v} \times \bar{H})\right).$$
(12)

The electron density is calculated by the formula

$$n(t,\overline{x}) = \sum_{m} N_{m} \hat{S}(\overline{X}_{m}(t) - \overline{x}) , \qquad (13)$$

where summing is carried out over all macroparticles, and \hat{o} is a deltoid function, with a carrier on the order of the dimensions of the calculation cell. The current density is calculated similarly.

The calculation region is a cylinder $0 < r < r_1$, $0 < z < z_1$, on the outer boundaries of which the following conditions are laid down

$$E_{r} - H_{\varphi} = 0 \quad \text{at} \quad z = z,$$

$$E_{z} + H_{\varphi} = 0 \quad \text{at} \quad r = r, ,$$
(14)

which simulates the absence of electromagnetic radiation from the cutside.

Electrons leaving the boundaries z=0, $z=z_1$, $r=r_1$, are excluded from the calculation, and those striking the r=0 axis are reflected from it, in accordance with (10). Quite large values of r_1, z_1 are chosen, so as not to affect the result.

3. We proceed to description of the calculation results. First and foremost, we note that, in all (with respect to γ , σ) versions, practically steady state behavior is observed. We dwell on transient details below, and we now give the general characteristics of these behaviors.

The two schemes of movement presented in Figs. 1 and 2 are typical. The current lines for two versions, which differ in the magnitude of the injected current ($\sigma=0.2$ and $\sigma=2$, respectively), with the same energy $\gamma=2$, are presented here.

In the first case, we have a uniform, expanding beam, propagating along the z axis. In the second case, the movement pattern is completely different. There is an envelope in the family of trajectories, the $z=z_{*}(r)$ surface, which reflects electrons ("pseudocathode"), and a nonuniform, multivelocity flow.

3

/8

The electrons flow past the $r/z \sim l$ cone, and a substantial fraction of them returns to the cathode.

4. A priori, it is clear that conditions are produced in the pseudocathode behavior, for the development of the known two beam instability [2]. There are two counterbeams, forward and reflected, in which the density of the fluxes is high in the reversal region and, consequently, high frequencies should be excited.

/11

On the other hand, there are stabilizing factors, steady state injection from the nearby cathode, constant current drift and a decrease in density with distance from the axis.

As the calculation results show, the interaction of all these factors results in an oscillatory process, the amplitude of which is small, and the average state corresponds to the steady state behavior pointed out above.

The transient effects intensify with increase in current. Therefore, we turn to the version with $\gamma=2$, $\sigma=4$ to describe them. $E_z(z)$ curves on the r=0 axis at different moments of time are presented in Fig. 3. The points where E_z passes through zero correspond to the pseudocathode location z_* . E_z vs. time is shown in Fig. 4, at a point located on the r=0 axis near the pseudocathode ($z \sim 0.25L$), for the same version, $\gamma=2$, $\sigma=4$. In this area, because of the large field gradient in the direction of movement of its profile, the amplitude of the oscillations is comparable to the size of the field itself.

Fig. 3. E, profiles on axis at $\gamma=2$, $\sigma=4$.

As a result of the pseudocathode pulsations, a small fraction of the electrons periodically prove to be above it, and they are dumped in the space beyond the cathode.

These pulsations give rise to transient phenomena in the entire flow. Electrons which reach the pseudocathode along one current line acquire various velocities upon reflection from

Fig. 4. $E_z(t)$ in pseudocathode area, at $\gamma=2$, $\sigma=4$.

it and, then, moving practically rectilinearly, they are located on curves, the shapes of which are similar to the jet from an oscillating hose. The movement of such jets basically determines the structure of the weak turbulent flow which arises.

For this reason, in description of the steady state characteristics of the behaviors by means of the current lines, we have represented the latter provisionally in the figures, by a dashed line which shows the average movement.

It can be said that the transient nature of the process is reduced $\frac{17}{17}$ to the transient nature of the pseudocathode.

Fig. 5. Flow at $\gamma = 2$, $\sigma = 0.5$

Fig. 6. E and P profiles on axis, at $\gamma = 2$, $\sigma = 0.5$

5. We know dwell in greater detail on the dependence of the average steady state properties of the flow on current $_0$. We consider versions with injected electron energies $\gamma=2$.

The results of calculation of the version with $\sigma=0.5$ are presented in Fig. 5. Although, the trajectories intersect in a narrow boundary layer, on the whole, the team remains uni-form, with practically constant current density over the cross section, which rises slightly at the boundary itself. Compared with the $\sigma=0.2$ version (Fig. 1), the rate of broadening of the beam has increased appreciably.

Curves of the $E_z(t)$ and pulse $P_z(z)$ fields along the z axis are given in Fig. 6, for the same version $\sigma=0.5$. The point where $E_z=0$, $P_z=min$ corresponds to the minimum potential. Upon passing it, the flow is accelerated. However, electron energy $W(P_z)$ remains less than the initial $W_p=\gamma mc^2$.

On the same terms, the variant with $\sigma=0.65$ is shown in Figs. 7 and 8. Uniformity is preserved only in the

Fig. 8. E and F profiles on axis, at $\gamma^{2}2$, $\sigma=0.65$.

axial region. A pseudocathode forms in the outer layers. The outer boundary of the injected beam (current line V) proves to be inside the flow. Eighty percent of the current moves outside it.

The version g=0.75 is presented in Fig. 9. The pseudocathode has formed completely and reached the axis. The outer layer of the beam becomes the inner one (line V). The flow "was turned inside cut". The main portion of the current, 84%, flows in a cone between lines II and V. A negligible fraction of the current ($\sqrt{4}$ %) leaks through the pseudocathode in a transient manner. A reverse current develops.

As we see, a qualitative rearrangement of the structure and shape of the flow occurs over a small interval of change of σ from 0.5 to 0.75. A critical current value can be spoken of, in /19 this case, $\sigma_{cr} \sim 0.6$.

With further increase in current, the flow pattern does not change qualitatively. The pseudocathode subsides and becomes flatter. The reverse current fraction increases. At $\sigma=2$ (Fig. 2) 34% of the electrons return on the z=0 plane and, at $\sigma=4$, 56%.

In the outer zone, the flow retains the shape of a cone with the same angle 45° . Of course, the fraction of the current traveling in

6. We have reported the calculation results of versions with injection energy $\gamma=2$. At other γ , the quantitative characteristics of the solution are different, of course, but all the effects described are preserved. Fig. 10 gives an idea of the presence of the pseudocathode and its height $z_{\#}$ (at r=0), in versions with other γ .

Specific information on $z_{\#}$ and σ_{cr} vs. γ also can be obtained, by means of analytic estimates.

7. In the limit, as $\sigma \rightarrow \infty$, the pseudocathode approaches the cathode without restriction, $z_{\pm}/L+0$. But, with $z_{\pm} << L$, the finite dimensions of the cathode should not affect the processes in the axial region. Therefore, if the increase of σ occurs through an increase in cathode radius L, with the density of the injected current preserved, for determination of the asymptotes of the solution in the axial zone, a unidimensional version of our problem, $\partial/\partial r \equiv 0$, which corresponds to an infinite cathode, can be used.

This problem was investigated in 3. The steady state version of it has an analytical solution, which can be written in the form

$$\bullet F = j_{*} \delta(\rho_{*}) \delta(W - gmc^{*} + e \{\tilde{E}, de\})$$
(15)

$$LeE_{a} = 2\sqrt{6}mc^{2}p_{a}, \quad E_{r} = H_{\varphi} = 0 \tag{16}$$

in which the relationship between $W(P_z)$ and z is determined, with $0 < z < z_*$, by the integral

$$\sqrt{6} \frac{Z_{y} - Z}{L} = \frac{1}{2} \int (X^{2} - 1)^{-\frac{1}{2}} dX$$
(17)

and z_{\pm} itself

$$\overline{\sigma} = \frac{1}{2} \int_{0}^{x} (x^{2} t)^{-y} dx$$
(18)

Precisely these values for the corresponding γ are represented in Fig. 10 by a dashed line. The asymptote is expressed completely clearly.

8. Simple reasoning permits an estimate of the critical current $\sigma_{cn}(\gamma)$ to be obtained, at which a change in type of behavior occurs.

We find the conditions of the existence of a steady state, single velocity flow, unbounded along the z axis.

The motion of an electron in a steady state field with potential ϕ , $\nabla_{\phi}=-\overline{E}$, occurs with retention of its total energy, $W-e_{\phi}=\text{const.}$ Since, at the time of injection, all the electrons have the same energy $W_0=\gamma \text{mc}^2$, and the cathode plane is equipotential, $\phi|_{z=0}=\phi_0$,

 $W - e\varphi = W_o - e\varphi, \quad W \ge mc^2$ (19) for all electrons in the entire flow.

The potential satisfies the Poisson equation

 $\Delta \psi = 4men \tag{20}$

and it is finite at infinity.

9

/20

For a single velocity flow, the current density

By virtue of the assumed boundedness of the beam with respect to r, at each z, evidently, $\phi \rightarrow \phi_0$ as $r \rightarrow \infty$. This gives a basis for presenting the radial portion of the Laplace operator in the form

$$\frac{1}{r} \frac{1}{2r^2} = \alpha \frac{V_0 - V}{R^2}$$
(22)

where a is a dimensionless, indeterminate coefficient, and R is the effective radius of the beam, such that

$$\pi R^2 j \cdot J_0 = \frac{mc^3}{4e}$$

/21

is the total current.

With (19), (21)-(23) taken into consideration, we rewrite equation (20) in the form

$$\mathcal{R}^{2} \frac{\partial^{2} W}{\partial Z^{2}} = \frac{4 e I_{e}}{V} + ol(W - W_{e})$$
(24)

On the assumption that R/z < const, it is easy to determine that a necessary condition of the existence of a bounded solution of equation (24), as $z \rightarrow \infty$, is the possibility of the reduction of its right side to zero. Otherwise, either W^{∞} , or the solution exists only in a finite interval, since W cannot be less than mc^2 .

By making the right side of (2^{k}) equal to zero, with fixed I₀ and a, we obtain an equation for W. Simple analysis shows that it has a real root, only in the event

$$\boldsymbol{\delta} \boldsymbol{\boldsymbol{<}} \boldsymbol{\boldsymbol{\alpha}} \left(\boldsymbol{\boldsymbol{\gamma}}^{\boldsymbol{H}} - \boldsymbol{\boldsymbol{\boldsymbol{i}}} \right)^{\boldsymbol{H}} \tag{25}$$

This formula gives an estimate of the value of the critical current $\sigma_{cr}(\gamma)$. If $\alpha \sim 1.3$, it is in good agreement with the calculation results (Fig. 10). In particular, this justifies the "simplicity" of

the reasoning used.

9. The authors thank V.S. Imshenitskiy, K.V. Krasnobayev, O.V. Lokutsiyevskiy and K.V. Khodatayev, the initiators of this work and constant participants in fruitful discussions, as well as N.M. Khokhlova and Ye.V. Shakhanova for assistance in the work.

REFERENCES

- Davidson, R., <u>Teoriya zaryazhennoy plazmy</u> [Charged Plasma Theory], Mir Press, Moscow, 1978.
- Briggs, R., <u>Dvukhpuchkovaya neustoychivost'</u> [Two Beam Instability], Mir Fress, Moscow, 1974.
- 3. Poukey, J.W., N. Rostoker, "One dimensional model of relativistic electron beam propagation," <u>Plasma Physics</u> <u>13</u>/10, (1971).