3,310 research outputs found

    Rhythmic interaction between Period1 mRNA and HnRNP Q leads to circadian time-dependent translation

    Get PDF
    The mouse PERIOD1 (mPER1) protein, along with other clock proteins, plays a crucial role in the maintenance of circadian rhythms. mPER1 also provides an important link between the circadian system and the cell cycle system. Here we show that the circadian expression of mPER1 is regulated by rhythmic translational control of mPer1 mRNA together with transcriptional modulation. This time-dependent translation was controlled by an internal ribosomal entry site (IRES) element in the 5' untranslated region (5'-UTR) of mPer1 mRNA along with the trans-acting factor mouse heterogeneous nuclear ribonucleoprotein Q (mhnRNP Q). Knockdown of mhnRNP Q caused a decrease in mPER1 levels and a slight delay in mPER1 expression without changing mRNA levels. The rate of IRES-mediated translation exhibits phase-dependent characteristics through rhythmic interactions between mPer1 mRNA and mhnRNP Q. Here, we demonstrate 5'-UTR-mediated rhythmic mPer1 translation and provide evidence for posttranscriptional regulation of the circadian rhythmicity of core clock genes.X112932sciescopu

    The Innate Immune System of the Perinatal Lung and Responses to Respiratory Syncytial Virus Infection

    Get PDF
    The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens

    Controlling Magnetic Anisotropy in a Zero-Dimensional S=1 Magnet Using Isotropic Cation Substitution

    Get PDF
    The [Zn_{1–x}_Ni-{x}(HF_{2})(pyz)_{2}]SbF_{6} (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm^{–1})] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm^{–1)}]. The substantial change in D is accomplished by an anisotropic lattice expansion in the MN_{4} (M = Zn or Ni) plane, wherein the increased concentration of isotropic Zn(II) ions induces a nonlinear variation in M-F and M-N bond lengths. In this, we exploit the relative donor atom hardness, where M-F and M-N form strong ionic and weak coordinate covalent bonds, respectively, the latter being more sensitive to substitution of Ni by the slightly larger Zn(II) ion. In this way, we are able to tune the single-ion anisotropy of a magnetic lattice site by Zn-substitution on nearby sites. This effect has possible applications in the field of single-ion magnets and the design of other molecule-based magnetic systems

    Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Get PDF
    BACKGROUND: Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. METHODS: We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. RESULTS: Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1) probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. CONCLUSIONS: Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss

    Remote Manipulation of Droplets on a Flexible Magnetically Responsive Film

    Get PDF
    The manipulation of droplets is used in a wide range of applications, from lab-on-a-chip devices to bioinspired functional surfaces. Although a variety of droplet manipulation techniques have been proposed, active, fast and reversible manipulation of pure discrete droplets remains elusive due to the technical limitations of previous techniques. Here, we describe a novel technique that enables active, fast, precise and reversible control over the position and motion of a pure discrete droplet with only a permanent magnet by utilizing a magnetically responsive flexible film possessing actuating hierarchical pillars on the surface. This magnetically responsive surface shows reliable actuating capabilities with immediate field responses and maximum tilting angles of ???90??. Furthermore, the magnetic responsive film exhibits superhydrophobicity regardless of tilting angles of the actuating pillars. Using this magnetically responsive film, we demonstrate active and reversible manipulation of droplets with a remote magnetic force.open0

    Stage-Dependent Tolerance of the German Cockroach, Blattella germanica for Dichlorvos and Propoxur

    Get PDF
    Stage-dependent dichlorvos and propoxur tolerance in a field population of the German cockroach, Blattella germanica Linnaeus (Blatodea: Blattellidae), was investigated in the laboratory using a topical application bioassay. The results showed the 6 week-old nymphs were more tolerant to dichlorvos and propoxur than the other ages tested. LD50 values of dichlorvos and propoxur for the 6 week-old nymphs were 2.003 µµg per insect and 5.296 µµg per insect, respectively. Tolerance ratios of 18.55-fold and 4.98-fold for LD50 were obtained from 6-week-old nymphs compared to 4 week-old nymphs. The specific activity of acetylcholinesterase (AChE) from 1 week-old nymphs was the highest among all tested developmental stages of nymphs and adult males and females. The specific activity of AChE decreased significantly with increasing age. The sensitivity of AChE to dichlorvos was the highest with a ki value of 3.12××104 mol-1min-1 in the last nymphal stage of B. germanica (about 6 weeks-old). The AChE from 4 week-old nymphs was the most sensitive to propoxur, with the highest ki value being 2.63××105 mol-1min-1. These results indicated that the different developmental stages and sexes of B. germanica affected the inhibition of AChE by dichlorvos and propoxur

    Interactions among mitochondrial proteins altered in glioblastoma

    Get PDF
    Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change ≥2) and significantly altered in GBM (p ≤ 0.05). Proteins associated with oxidative damage (including catalase, superoxide dismutase 2, peroxiredoxin 1 and peroxiredoxin 4) were increased in GBM. Protein–protein interaction analysis highlighted a reduction in multiple proteins coupled to energy metabolism (in particular respiratory chain proteins, including 23 complex-I proteins). Qualitative ultrastructural analysis in GBM with electron microscopy showed a notably higher prevalence of mitochondria with cristolysis in GBM. This study highlights the complex mitochondrial proteomic adjustments which occur in GBM pathophysiology

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives
    corecore