7 research outputs found

    Neon abundances in mercury-manganese stars: Radiative accelerators and non-LTE calculations

    Get PDF
    We make new non-local thermodynamic equilibrium calculations to deduce the abundances of neon from visible-region echelle spectra of selected Ne i lines in seven normal stars and 20 HgMn stars. We find that the best strong blend-free Ne line that can be used at the lower end of the effective temperature Teff range is λ6402, although several other potentially useful Ne i lines are found in the red region of the spectra of these stars. The mean neon abundance in the normal stars (log A=8.10) is in excellent agreement with the standard abundance of neon (8.08). However, in HgMn stars neon is almost universally underabundant, ranging from marginal deficits of 0.1–0.3 dex to underabundances of an order of magnitude or more. In many cases, the lines are so weak that only upper limits can be established. The most extreme example found is υ Her with an underabundance of at least 1.5 dex. These underabundances are qualitatively expected from radiative acceleration calculations, which show that Ne has a very small radiative acceleration in the photosphere, and that it is expected to undergo gravitational settling if the mixing processes are sufficiently weak and there is no strong stellar wind. According to theoretical predictions, the low Ne abundances place an important constraint on the intensity of such stellar winds, which must be less than 10−14 M⊙ yr−1 if they are non-turbulent

    Manganese abundances in mercury-manganese stars

    Get PDF
    We use exact curve-of-growth analysis and spectral synthesis to deduce the abundance of Mn from high signal-to-noise ratio visible-region echelle spectra of selected Mn i and MnII lines in 24 HgMn stars. The results are compared with the Mn abundances derived from UV resonance lines by Smith & Dworetsky. We find excellent agreement for several unblended Mn lines and confirm the temperature dependence of the Mn abundance found by Smith & Dworetsky. The MnII lines at λλ 4206 and 4326 are much stronger than one would predict from the mean Mn abundances. The lack of agreement is greatest for stars with the strongest MnII lines. Using ad hoc multicomponent fits to the profiles of sharp-lined stars, we show that most of the discrepancies can be explained by hyperfine structure that desaturates the lines, with full widths of the order of 0.06--0.09 Å

    Xenon in Mercury-Manganese Stars

    Get PDF
    Previous studies of elemental abundances in Mercury-Manganese (HgMn) stars have occasionally reported the presence of lines of the ionized rare noble gas Xe II, especially in a few of the hottest stars with Teff ~ 13000--15000 K. A new study of this element has been undertaken using observations from Lick Observatory's Hamilton Echelle Spectrograph. In this work, the spectrum synthesis program UCLSYN has been used to undertake abundance analysis assuming LTE. We find that in the Smith & Dworetsky sample of HgMn stars, Xe is vastly over-abundant in 21 of 22 HgMn stars studied, by factors of 3.1--4.8 dex. There does not appear to be a significant correlation of Xe abundance with Teff. A comparison sample of normal late B stars shows no sign of Xe II lines that could be detected, consistent with the expected weakness of lines at normal abundance. The main reason for the previous lack of widespread detection in HgMn stars is probably due to the strongest lines being at longer wavelengths than the photographic blue. The lines used in this work were 4603.03A, 4844.33A and 5292.22A
    corecore