19 research outputs found

    Biomarkers of coagulation, endothelial function, and fibrinolysis in critically ill patients with COVID-19: A single-center prospective longitudinal study

    Get PDF
    Background: Immunothrombosis and coagulopathy in the lung microvasculature may lead to lung injury and disease progression in coronavirus disease 2019 (COVID-19). We aim to identify biomarkers of coagulation, endothelial function, and fibrinolysis that are associated with disease severity and may have prognostic potential. Methods: We performed a single-center prospective study of 14 adult COVID-19(+) intensive care unit patients who were age- and sex-matched to 14 COVID-19(−) intensive care unit patients, and healthy controls. Daily blood draws, clinical data, and patient characteristics were collected. Baseline values for 10 biomarkers of interest were compared between the three groups, and visualized using Fisher\u27s linear discriminant function. Linear repeated-measures mixed models were used to screen biomarkers for associations with mortality. Selected biomarkers were further explored and entered into an unsupervised longitudinal clustering machine learning algorithm to identify trends and targets that may be used for future predictive modelling efforts. Results: Elevated D-dimer was the strongest contributor in distinguishing COVID-19 status; however, D-dimer was not associated with survival. Variable selection identified clot lysis time, and antigen levels of soluble thrombomodulin (sTM), plasminogen activator inhibitor-1 (PAI-1), and plasminogen as biomarkers associated with death. Longitudinal multivariate k-means clustering on these biomarkers alone identified two clusters of COVID-19(+) patients: low (30%) and high (100%) mortality groups. Biomarker trajectories that characterized the high mortality cluster were higher clot lysis times (inhibited fibrinolysis), higher sTM and PAI-1 levels, and lower plasminogen levels. Conclusions: Longitudinal trajectories of clot lysis time, sTM, PAI-1, and plasminogen may have predictive ability for mortality in COVID-19

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Body temperature and mouse scoring systems as surrogate markers of death in cecal ligation and puncture sepsis

    No full text
    Abstract Background Despite increasing ethical standards for conducting animal research, death is still often used as an endpoint in mouse sepsis studies. Recently, the Murine Sepsis Score (MSS), Mouse Clinical Assessment Score for Sepsis (M-CASS), and Mouse Grimace Scale (MGS) were developed as surrogate endpoint scoring systems for assessing pain and disease severity in mice. The objective of our study was to compare the effectiveness of these scoring systems and monitoring of body temperature for predicting disease progression and death in the cecal ligation and puncture (CLP) sepsis model, in order to better inform selection of surrogate endpoints for death in experimental sepsis. Methods C57Bl/6J mice were subjected to control sham surgery, or moderate or severe CLP sepsis. All mice were monitored every 4 h for surrogate markers of death using modified versions of the MSS, M-CASS, and MGS scoring systems until 24 h post-operatively, or until endpoint (inability to ambulate) and consequent euthanasia. Results Thirty percent of mice subjected to moderate severity CLP reached endpoint by 24 h post-CLP, whereas 100% undergoing severe CLP reached endpoint within 20 h. Modified MSS, M-CASS, and MGS scores all increased, while body temperature decreased, in a time-dependent and sepsis severity-dependent manner, although modified M-CASS scores showed substantial variability. Receiver operating characteristic curves demonstrate that the last recorded body temperature (AUC = 0.88; 95% CI 0.77–0.99), change in body temperature (AUC = 0.89; 95% CI 0.78–0.99), modified M-CASS (AUC = 0.93; 95% CI 0.85–1.00), and modified MSS (AUC = 0.95; 95% CI 0.88–1.01) scores are all robust for predicting death in CLP sepsis, whereas modified MGS (AUC = 0.78; 95% CI 0.63–0.92) is less robust. Conclusions The modified MSS and body temperature are effective markers for assessing disease severity and predicting death in the CLP model, and should thus be considered as valid surrogate markers to replace death as an endpoint in mouse CLP sepsis studies

    Comparison of the source and prognostic utility of cfDNA in trauma and sepsis

    No full text
    Abstract Background Circulating cell-free DNA (cfDNA) may contribute to the pathophysiology of post-injury inflammation and coagulation in trauma. However, the source and mechanism of release of cfDNA in trauma is not well understood. One potential source of cfDNA is from Neutrophil Extracellular Traps (NETs), released by activated neutrophils during the process of NETosis. The primary objective of our study was to determine if cfDNA has prognostic utility in trauma. The secondary objective of this study was to determine the source of cfDNA in trauma compared to sepsis. Methods We studied trauma patients from two prospective observational cohort studies: the DNA as a Prognostic Marker in ICU Patients (DYNAMICS) study and the Endotoxin in Polytrauma (ENPOLY) study. We also studied septic patients from the DYNAMICS study. Citrated plasma samples were collected longitudinally from the patients (days 1 to 7). The following molecules were measured in the plasma samples: cfDNA, protein C (PC), myeloperoxidase (MPO) (a marker of neutrophil activation), citrullinated Histone H3 (H3Cit, a marker of NETosis), cyclophilin A (a marker of necrosis), and caspase-cleaved K18 (a marker of apoptosis). Results A total of 77 trauma patients were included (n = 38 from DYNAMICS and n = 39 from ENPOLY). The median age was 49 years; 27.3% were female, and mortality was 16.9% at 28 days. Levels of cfDNA were elevated compared to healthy values but not significantly different between survivors and non-survivors. There was a positive correlation between MPO and cfDNA in septic patients (r = 0.424, p < 0.001). In contrast, there was no correlation between MPO and cfDNA in trauma patients (r = – 0.192, p = 0.115). Levels of H3Cit, a marker of NETosis, were significantly elevated in septic patients compared to trauma patients (p < 0.01) while apoptosis and necrosis markers did not differ between the two groups. Conclusion Our studies suggest that the source and mechanism of release of cfDNA differ between trauma and sepsis patients. In sepsis, cfDNA is likely primarily released by activated neutrophils via the process of NETosis. In contrast, cfDNA in trauma appears to originate mainly from injured or necrotic cells. Although cfDNA is elevated in trauma and sepsis patients compared to healthy controls, cfDNA does not appear to have prognostic utility in trauma patients. Trial registration ClinicalTrials.gov Identifier: NCT01355042 . Registered May 17, 201

    Epigenetic profiling in severe sepsis: a pilot study of DNA methylation profiles in critical illness

    No full text
    Objectives: Epigenetic alterations are an important regulator of gene expression in health and disease; however, epigenetic data in sepsis are lacking. To demonstrate proof of concept and estimate effect size, we performed the first epigenome-wide methylation analysis of whole blood DNA samples from a cohort of septic and nonseptic critically ill patients. Design: A nested case-control study using genomic DNA isolated from whole blood from septic (n = 66) and nonseptic (n = 68) critically ill patients on "Day 1" of ICU admission. Methylation patterns were identified using Illumina 450K arrays with percent methylation expressed as beta values. After quality control, 134 participants and 414,818 autosomal cytosine-phosphate-guanine sites were used for epigenome-wide methylation analyses. Setting: Tertiary care hospitals. Subjects: Critically ill septic and nonseptic patients. Interventions: Observational study. Measurements and Main Results: A total of 668 differentially methylated regions corresponding to 443 genes were identified. Known sepsis-associated genes included complement component 3; angiopoietin 2; myeloperoxidase; lactoperoxidase; major histocompatibility complex, class I, A; major histocompatibility complex, class II, isotype DR beta I; major histocompatibility complex, class I, C; and major histocompatibility complex, class II, isotype DQ beta I. When compared with whole blood gene expression data from seven external datasets containing septic and nonseptic patients, 81% of the differentially methylated region-associated genes were differentially expressed in one or more datasets and 31% in three or more datasets. Functional analysis showed enrichment for antigen processing and presentation, methyltransferase activity, cell adhesion, and cell junctions. Analysis by weighted gene coexpression network analysis revealed DNA comethylation modules that were associated with clinical traits including severity of illness, need for vasopressors, and length of stay. Conclusions: DNA methylation marks may provide important causal and potentially biomarker information in critically ill patients with sepsis.McLaughlin Foundation Accelerator Grant in Genomic Medicine and Health Informatics (2015-2016)Canadian Institutes of Health ResearchCanadian Institutes of Health Research (CIHR) [MOP-130331]info:eu-repo/semantics/publishedVersio
    corecore