23 research outputs found

    On the gravitational redshift

    Full text link
    The study of the gravitational redshift\,---\,a relative wavelength increase of ≈2×10−6\approx 2 \times 10^{-6} was predicted for solar radiation by Einstein in 1908\,---\,is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect\,---\,we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the gravitational force acting on an electron in a hydrogen atom situated in the Sun's photosphere to the electrostatic force between the proton and the electron is approximately 3×10−213 \times 10^{-21}. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. Here we show, with Einstein's early assumption of the frequency of spectral lines depending only on the generating ion itself as starting point, that a solution can be formulated based on a two-step process in analogy with Fermi's treatment of the Doppler effect. It provides a sequence of physical processes in line with the conservation of energy and momentum resulting in the observed shift and does not employ a geometric description. The gravitational field affects the release of the photon and not the atomic transition. The control parameter is the speed of light. The atomic emission is then contrasted with the gravitational redshift of matter-antimatter annihilation events.Comment: 19 Pages; 2 Table

    Impact Models of Gravitational and Electrostatic Forces

    Get PDF
    The far-reaching gravitational force is described by a heuristic impact model with hypothetical massless entities propagating at the speed of light in vacuum transferring momentum and energy between massive bodies through interactions on a local basis. In the original publication in 2013, a spherical symmetric emission of secondary entities had been postulated. The potential energy problems in gravitationally and electrostatically bound two-body systems have been studied in the framework of this impact model of gravity and of a proposed impact model of the electrostatic force. These studies have indicated that an antiparallel emission of a secondary entity—now called graviton—with respect to the incoming one is more appropriate. This article is based on the latter choice and presents the modifications resulting from this change. The model has been applied to multiple interactions of gravitons in large mass conglomerations in several publications. They will be summarized here taking the modified interaction process into account. In addition, the speed of photons as a function of the gravitational potential is considered in this context together with the dependence of atomic clocks and the redshift on the gravitational potential

    Plasma flows in the cool loop systems

    Full text link
    We study the dynamics of low-lying cool loop systems for three datasets as observed by the Interface Region Imaging Spectrograph (IRIS). Radiances, Doppler shifts and line widths are investigated in and around observed cool loop systems using various spectral lines formed between the photosphere and transition region (TR). Footpoints of the loop threads are either dominated by blueshifts or redshifts. The co-spatial variation of velocity above the blue-shifted footpoints of various loop threads shows a transition from very small upflow velocities ranging from (-1 to +1) km/s in the Mg\,{\sc ii} k line (2796.20~\AA; formation temperature: log (T/K) = 4.0) to the high upflow velocities from (-10 to -20) km/s in Si\,{\sc iv}. Thus, the transition of the plasma flows from red-shift (downflows) to the blue-shift (upflows) is observed above the footpoints of these loop systems in the spectral line C\,{\sc ii} (1334.53~\AA; \log (T/K) = 4.3) lying between Mg\,{\sc ii} k and Si\,{\sc iv} (1402.77~\AA; log (T / K) = 4.8). This flow inversion is consistently observed in all three sets of the observational data. The other footpoint of loop system always remains red-shifted indicating downflowing plasma. The multi-spectral line analysis in the present paper provides a detailed scenario of the plasma flows inversions in cool loop systems leading to the mass transport and their formation. The impulsive energy release due to small-scale reconnection above loop footpoint seems to be the most likely cause for sudden initiation of the plasma flows evident at TR temperatures.Comment: 29 Pages, 14 figures, The Astrophysical Journal (in press
    corecore