9 research outputs found

    SLC4A10 mutation causes a neurological disorder associated with impaired GABAergic transmission

    Get PDF
    SLC4A10 is a plasma-membrane bound transporter which utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of cerebrospinal fluid. Using next generation sequencing on samples from five unrelated families encompassing ten affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and typically severe intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorders including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioral abnormalities including delayed habituation and alterations in the 2-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggests an important role of SLC4A10 in the production of the cerebrospinal fluid. However, it is notable that despite diverse roles of the cerebrospinal fluid in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel characteristic neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties

    GM1 GANGLIOSIDOSIS ASSOCIATED WITH NEONATAL-ONSET OF DIFFUSE ECCHYMOSES AND MONGOLIAN SPOTS

    No full text
    A 7-month old girl with GM1 gangliosidosis type 1 manifested with diffuse ecchymosis and Mongolian spots. The cutaneous lesions were present at birth before the appearance of the other features of the disease. We postulate that dermal pigmentation may be recognized as an early sign of GM1 gangliosidosis

    Glutaric aciduria type 1: Clinical, biochemical and molecular findings in patients from Israel

    No full text
    Glutaric aciduria type 1 (GA1) is a rare cerebral organic aciduria which typically manifests as an acute encephalopathic crisis followed by profound long-term neurological handicap. We report the diagnosis of 12 new patients from a single laboratory in Israel during a 5-year period. Eleven of the 12 were of Palestinian origin, and only two were related. One patient was asymptomatic whilst one was mildly, one moderately and nine severely affected, two of whom had unusual MRI findings. Two patients had normal glutaric acid excretion and normal blood glutarylcarnitine levels yet glutarylcarnitine excretion was increased, indicating its utility as a diagnostic marker. Four novel GCDH mutations (Thr193_Arg194insHis, Asn329Ser, Thr341Pro, Met405Val) and five previously reported mutations (Ser119Leu, Leu283Pro, Ala293Thr, Gly390Arg and Thr416Ile) were identified. Severely and mildly affected or even asymptomatic patients shared the same genotypes (Thr416Ile/Thre416Ile and Aal293Thr/Thr193_Arg194insHis). Knowledge of the responsible mutation enabled successful prenatal diagnosis on chorionic villous DNA in three families. In conclusion, GA1 is genetically heterogeneous and has a relatively high incidence in the Palestinian population, reflecting the historical tradition of marriages within extended kindreds, particularly in isolated villages. Additional genetic and/or environmental factors must account for the phenotypic heterogeneity in patients with the same genotype. The diagnosis was not suspected in the majority of cases despite typical clinical and/or neuroimaging features, suggesting that glutaric aciduria may be under-diagnosed. Greater awareness of glutaric aciduria amongst pediatricians, neonatologists and radiologists is the key to identifying the disorder in the presymptomatic phase and preventing its catastrophic consequences

    PNC2 (SLC25A36) Deficiency Associated With the Hyperinsulinism/Hyperammonemia Syndrome

    No full text
    Context The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second-most common form of congenital hyperinsulinism, has been associated with dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. Objective To identify the underlying genetic etiology in 2 siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. Methods The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. Results A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26-aa in-frame deletion in the first repeat domain of the protein, which abolishes transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content, which likely leads to a hyperactivation of glutamate dehydrogenase in our patients. Conclusion We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion

    Mitochondrial PITRM1 peptidase loss-of-function in childhood cerebellar atrophy.

    No full text
    OBJECTIVE: To identify the genetic basis of a childhood-onset syndrome of variable severity characterised by progressive spinocerebellar ataxia, mental retardation, psychotic episodes and cerebellar atrophy. METHODS: Identification of the underlying mutations by whole exome and whole genome sequencing. Consequences were examined in patients' cells and in yeast. RESULTS: Two brothers from a consanguineous Palestinian family presented with progressive spinocerebellar ataxia, mental retardation and psychotic episodes. Serial brain imaging showed severe progressive cerebellar atrophy. Whole exome sequencing revealed a novel mutation: pitrilysin metallopeptidase 1 (PITRM1) c.2795C>T, p.T931M, homozygous in the affected children and resulting in 95% reduction in PITRM1 protein. Whole genome sequencing revealed a chromosome X structural rearrangement that also segregated with the disease. Independently, two siblings from a second Palestinian family presented with similar, somewhat milder symptoms and the same PITRM1 mutation on a shared haplotype. PITRM1T931M carrier frequency was 0.027 (3/110) in the village of the first family evaluated, and 0/300 among Palestinians from other locales. PITRM1 is a mitochondrial matrix enzyme that degrades 10-65 amino acid oligopeptides, including the mitochondrial fraction of amyloid-beta peptide. Analysis of peptide cleavage activity by the PITRM1T931M protein revealed a significant decrease in the degradation capacity specifically of peptides ≥40 amino acids. CONCLUSION: PITRM1T931M results in childhood-onset recessive cerebellar pathology. Severity of PITRM1-related disease may be affected by the degree of impairment in cleavage of mitochondrial long peptides. Disruption and deletion of X linked regulatory segments may also contribute to severity
    corecore