78 research outputs found

    Isolated Ventricular Noncompaction Syndrome in a Nigerian Male: Case Report and Review of the Literature

    Get PDF
    Isolated ventricular non-compaction cardiomyopathy (IVNC) is a rare, morphologically distinct primary genetic cardiomyopathy, which is now gaining prominence as an important differential diagnosis in patients presenting with cardiac failure. We describe a case report of a Nigerian male with facial dysmorphism presenting with cardiac failure. This is followed by a review of the literature with focus on the diagnosis of this condition, which may be difficult especially in non-Caucasian populations

    Advances in Therapies and Imaging for Systemic Vasculitis

    Get PDF
    Vasculitis is a systemic disease characterized by immune-mediated injury of blood vessels. Current treatments for vasculitis, such as glucocorticoids and alkylating agents, are associated with significant side effects. Furthermore, the management of both small and large vessel vasculitis is challenging because of a lack of robust markers of disease activity. Recent research has advanced our understanding of the pathogenesis of both small and large vessel vasculitis, and this has led to the development of novel biologic therapies capable of targeting key cytokine and cellular effectors of the inflammatory cascade. In parallel, a diverse range of imaging modalities with the potential to monitor vessel inflammation are emerging. Continued expansion of combined structural and molecular imaging using positron emission tomography with computed tomography or magnetic resonance imaging may soon provide reliable longitudinal tracking of vascular inflammation. In addition, the emergence of radiotracers able to assess macrophage activation and immune checkpoint activity represents an exciting new frontier in imaging vascular inflammation. In the near future, these advances will allow more precise imaging of disease activity enabling clinicians to offer more targeted and individualized patient management

    Atrial CARdiac Magnetic resonance imaging in patients with embolic stroke of unknown source without documented Atrial Fibrillation (CARM-AF): Study design and clinical protocol

    Get PDF
    Background: Initiation of anticoagulation therapy in ischemic stroke patients is contingent on a clinical diagnosis of atrial fibrillation (AF). Results from previous studies suggest thromboembolic risk may predate clinical manifestations of AF. Early identification of this cohort of patients may allow early initiation of anticoagulation and reduce the risk of secondary stroke. Objective: This study aims to produce a substrate-based predictive model using cardiac magnetic resonance imaging (CMR) and baseline noninvasive electrocardiographic investigations to improve the identification of patients at risk of future thromboembolism. Methods: CARM-AF is a prospective, multicenter, observational cohort study. Ninety-two patients will be recruited following an embolic stroke of unknown source (ESUS) and undergo atrial CMR followed by insertion of an implantable loop recorder (ILR) as per routine clinical care within 3 months of index stroke. Remote ILR follow-up will be used to allocate patients to a study or control group determined by the presence or absence of AF as defined by ILR monitoring. Results: Baseline data collection, noninvasive electrocardiographic data analysis, and imaging postprocessing will be performed at the time of enrollment. Primary analysis will be performed following 12 months of continuous ILR monitoring, with interim and delayed analyses performed at 6 months and 2 and 3 years, respectively. Conclusion: The CARM-AF Study will use atrial structural and electrocardiographic metrics to identify patients with AF, or at high risk of developing AF, who may benefit from early initiation of anticoagulation

    Quantification of macrophage-driven inflammation during myocardial infarction with 18F-LW223, a novel TSPO radiotracer with binding independent of the rs6971 human polymorphism

    Get PDF
    Myocardial infarction (MI) is one of the leading causes of death worldwide, and inflammation is central to tissue response and patient outcomes. The 18-kDa translocator protein (TSPO) has been used in PET as an inflammatory biomarker. The aims of this study were to screen novel, fluorinated, TSPO radiotracers for susceptibility to the rs6971 genetic polymorphism using in vitro competition binding assays in human brain and heart; assess whether the in vivo characteristics of our lead radiotracer, 18F-LW223, are suitable for clinical translation; and validate whether 18F-LW223 can detect macrophage-driven inflammation in a rat MI model. Methods: Fifty-one human brain and 29 human heart tissue samples were screened for the rs6971 polymorphism. Competition binding assays were conducted with 3H-PK11195 and the following ligands: PK11195, PBR28, and our novel compounds (AB5186 and LW223). NaĂŻve rats and mice were used for in vivo PET kinetic studies, radiometabolite studies, and dosimetry experiments. Rats underwent permanent coronary artery ligation and were scanned using PET/CT with an invasive input function at 7 d after MI. For quantification of PET signal in the hypoperfused myocardium, K1 (rate constant for transfer from arterial plasma to tissues) was used as a surrogate marker of perfusion to correct the binding potential for impaired radiotracer transfer from plasma to tissue (BPTC). Results: LW223 binding to TSPO was not susceptible to the rs6971 genetic polymorphism in human brain and heart samples. In rodents, 18F-LW223 displayed a specific uptake consistent with TSPO expression, a slow metabolism in blood (69% of parent at 120 min), a high plasma free fraction of 38.5%, and a suitable dosimetry profile (effective dose of 20.5–24.5 ÎŒSv/MBq). 18F-LW223 BPTC was significantly higher in the MI cohort within the infarct territory of the anterior wall relative to the anterior wall of naĂŻve animals (32.7 ± 5.0 vs. 10.0 ± 2.4 cm3/mL/min, P ≀ 0.001). Ex vivo immunofluorescent staining for TSPO and CD68 (macrophage marker) resulted in the same pattern seen with in vivo BPTC analysis. Conclusion: 18F-LW223 is not susceptible to the rs6971 genetic polymorphism in in vitro assays, has favorable in vivo characteristics, and is able to accurately map macrophage-driven inflammation after MI
    • 

    corecore