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BACKGROUND Initiation of anticoagulation therapy in ischemic
stroke patients is contingent on a clinical diagnosis of atrial fibril-
lation (AF). Results from previous studies suggest thromboembolic
risk may predate clinical manifestations of AF. Early identification of
this cohort of patients may allow early initiation of anticoagulation
and reduce the risk of secondary stroke.

OBJECTIVE This study aims to produce a substrate-based predic-
tive model using cardiac magnetic resonance imaging (CMR) and
baseline noninvasive electrocardiographic investigations to
improve the identification of patients at risk of future thromboem-
bolism.

METHODS CARM-AF is a prospective, multicenter, observational
cohort study. Ninety-two patients will be recruited following an
embolic stroke of unknown source (ESUS) and undergo an atrial
CMR followed by insertion of an implantable loop recorder (ILR)
as per routine clinical care within 3 months of index stroke. Remote
ILR follow-up will be used to allocate patients to a study or control
group determined by the presence or absence of AF as defined by ILR
monitoring.
Address reprint requests and correspondence:Dr I. D. Kotadia, Division of Imag
North Wing, St. Thomas’ Hospital, 249 Westminster Bridge Rd, London, SE1 7E

2666-5018/© 2022 Heart Rhythm Society. Published by Elsevier Inc. This is an op
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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RESULTS Baseline data collection, noninvasive electrocardio-
graphic data analysis, and imaging postprocessing will be per-
formed at the time of enrollment. Primary analysis will be
performed following 12 months of continuous ILR monitoring,
with interim and delayed analyses performed at 6 months and 2
and 3 years, respectively.

CONCLUSION The CARM-AF Study will use atrial structural and
electrocardiographic metrics to identify patients with AF, or at
high risk of developing AF, who may benefit from early initiation
of anticoagulation.
KEYWORDS Ischemic stroke; Embolic stroke of unknown source;
Atrial fibrillation; Atrial cardiomyopathy; Cardiac magnetic reso-
nance imaging; Electrocardiogram
(Heart Rhythm O2 2022;-:1–8) © 2022 Heart Rhythm Society. Pub-
lished by Elsevier Inc. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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Introduction
Atrial fibrillation (AF) is a major risk factor for ischemic
stroke resulting in significant morbidity and mortality, but
may not be identified by routine clinical monitoring during
poststroke care.1 It is estimated that 25% of embolic strokes
of unknown source (ESUS) can be attributed to undiagnosed
AF, with the risk of stroke recurrence in this cohort being
high following the primary stroke event.2,3 Secondary stroke
risk reduction in AF patients can be achieved by timely initi-
ation of anticoagulation therapy.
ing Sciences and Biomedical Engineering, King’s College London, 4th Floor
H United Kingdom. E-mail address: irum.kotadia@kcl.ac.uk.
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KEY FINDINGS

- Undiagnosed atrial fibrillation is the underlying cause
of a significant proportion of strokes originally classi-
fied as embolic stroke of unknown source (ESUS).

- Atrial fibrillation is associated with marked structural
abnormalities of the left atrium, including dilatation,
spherical remodeling, and atrial late gadolinium
enhancement, which may be quantified using atrial
cardiac magnetic resonance imaging.

- This study will test the hypothesis that identification of
these structural abnormalities using atrial cardiac
magnetic resonance imaging can identify the subset of
ESUS patients at risk of atrial fibrillation using the gold
standard of implantable loop recorder monitoring as
the comparator.

- A poststroke model assessing atrial substrate predictive
of developing atrial fibrillation may allow for earlier
detection of patients at thromboembolic risk and allow
earlier initiation of anticoagulation in these patients.
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Current guidelines for initiation of anticoagulation
mandate electrocardiographic documentation of AF.4 Two
landmark trials (EMBRACE and CRYSTAL-AF) provide
evidence that increased AF detection rates are possible with
prolonged ambulatory monitoring or following insertion of
an implantable loop recorder (ILR).5,6 However, median
AF detection time in real-world studies ranges from 40
days (interquartile range: 14–84 days) to 112 days (interquar-
tile range: 35–293 days).5,7 With a risk reduction from 12%
to 4% per year (hazard ratio 0.34; 95% CI 0.36–0.79)
following the use of anticoagulation, delays in initiation of
therapy are likely to have an impact on the incidence of sec-
ondary stroke.8 In addition, a requirement for prolonged
monitoring is associated with an increased cost burden and
need for further resources to accommodate follow-up.

A further limitation on the requirement of AF documenta-
tion is the discordance in temporality, biological gradient,
and specificity between AF and ischemic stroke previously
reported.9–11 Both the ASSERT and IMPACT trials
enrolled patients with an implantable cardiac device prior
to the index stroke event and demonstrated discordance in
temporality, with up to 16% of patients in the ASSERT
study being diagnosed with AF after the index stroke event
despite prior device insertion.9–11 These studies suggest
that elevated thromboembolic risk may exist prior to
clinical detection of AF. Furthermore, while the ROCKET-
AF Trial suggested an increase in adjusted rates of stroke
or systemic embolism in the persistent AF group compared
with the paroxysmal AF group (OR: 2.18 vs 1.73), the
RE-LY Trial found no statistically significant change in
thromboembolic risk between groups, suggesting that
increased duration of AF may not be associated
with increased stroke risk.12,13 In addition, previous
FLA 5.6.0 DTD � HROO199_proof �
meta-analyses have suggested that restoration of sinus
rhythm does not reduce the risk of stroke,14,15 providing
the underlying basis for continuation of anticoagulation for
the purposes of stroke risk reduction regardless of treatment
strategy following AF diagnosis if risk factors are present. As
such, it is conceivable that patients with short paroxysms of
AF who remain at high risk for secondary stroke may be un-
diagnosed by current standards of poststroke investigation of
AF, which often include an electrocardiogram (ECG) and 24-
hour Holter monitor. Combined, these studies suggest that
elevated thromboembolic risk may exist prior to clinical
detection of AF and represent a further delay in initiation
of anticoagulation therapy in a high-risk cohort.

Previous ESUS studies, including NAVIGATE-ESUS
and RESPECT-ESUS, have unsuccessfully attempted to
identify this cohort for early initiation of anticoagulation.16,17

Recent models suggest comorbidities associated with
elevated stroke risk (eg, hypertension, diabetes, vascular dis-
ease) and known to be associated with atrial disease may pro-
vide an atrial thromboembolic substrate even prior to the
development of clinical arrhythmia.9,18

A poststroke model assessing atrial substrate predictive of
developing AF may allow for earlier detection of patients at
thromboembolic risk, allowing for earlier initiation of anti-
coagulation.

A novel term, “atrial cardiomyopathy,” has been described
that refers to atrial remodeling resulting in “clinically relevant
structural and electrophysiological changes of the atrium.”19

Atrial fibrosis plays a central role in the AF substrate, having
been identified histologically in patients with AF and in pa-
tients with risk factors for AF. Atrial geometry also plays an
important role in the pathogenesis of AF, with left atrial
enlargement being greater in patients with persistent vs parox-
ysmal AF and atrial sphericity more pronounced in those with
recurrent AF.20 In patients with AF, increasing atrial late gad-
olinium enhancement (LGE) on cardiac magnetic resonance
(CMR) imaging is associated with increased risk of major
adverse cardiovascular and cerebrovascular events, driven pri-
marily by an increased risk of stroke or transient ischemic
attack.21 Although atrial CMR imaging has frequently been
used for substrate assessment in patients with known AF,
few studies have published data regarding atrial substrate
assessment in ESUS patients, highlighting a key knowledge
gap.22 Identifying ESUS patients displaying these structural
changes in the absence of AF may arguably identify patients
at higher risk of developing AF and who may benefit from
early anticoagulation poststroke.

Similarly, electrophysiological changes present on surface
ECG have previously been highlighted in the literature as in-
direct surrogate markers of atrial cardiomyopathy and stroke.
Analyses of p waves from the surface ECG show that p-wave
terminal force in lead V1 (PTFV1) is independently associ-
ated with stroke, as well as structural atrial disease including
atrial dilatation and fibrosis.23,24 Both PTFV1 and supraven-
tricular ectopy have also previously been shown to be strong
predictors of paroxysmal AF in ischemic stroke patients.25,26
228
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Taken together, these observations suggest that left atrial
structural and electrical remodeling are associated with
stroke and predictive of the presence of paroxysmal AF
even in the absence of documented AF at the time of the in-
dex stroke.

The CARM-AF study therefore seeks to detect atrial re-
modeling in a subset of patients with prior ischemic stroke
and no AF detected during routine assessment. We hypothe-
size that the degree of structural and electrical remodeling
present at the time of the first stroke will be predictive of
the subsequent occurrence of AF as documented by gold-
standard long-term ILR monitoring. The results of CARM-
AF can inform future randomized controlled trials where
clinical decisions regarding anticoagulation therapy are
made at the time of the index stroke, potentially reducing
the risk of secondary stroke.
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Objectives
The overall research aim is to produce a substrate-based pre-
dictive model using CMR and electrocardiographic parame-
ters that may better identify ESUS patients at risk of
developing AF.

The principal research question is to determine if atrial
CMR imaging can predict the occurrence of AF in advance
of the clinical arrhythmia in patients with confirmed ischemic
stroke. The specific hypotheses that will be tested are as fol-
lows: (1) left atrial LGE in patients with ESUS is greater in
patients with AF than those without AF documented by
ILR; and (2) left atrial sphericity in patients with ESUS is
greater in those patients with AF than those without AF docu-
mented by ILR.

The secondary research question is to determine whether
electrocardiographic parameters can predict the occurrence
of AF in advance of the clinical arrhythmia in patients with
confirmed ischemic stroke. The specific hypotheses that
will be tested are as follows: (3) PTFV1 in patients with
ESUS is greater in those patients with AF than those without
AF documented by ILR; and (4) supraventricular ectopy in
patients with ESUS is greater in those patients with AF
than those without AF documented by ILR.

As described in Data Analysis, below, further analysis will
be performed to combine structural and electrical variables
into a single score to improve prediction of AF status, which
can be employed in future randomized controlled trials.
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Design
The CARM-AF Study is a multicenter, prospective, observa-
tional study of patients who have been diagnosed with an
embolic stroke of unknown source in the absence of docu-
mented atrial fibrillation. The study conforms to the princi-
ples outlined in the Declaration of Helsinki. Ethical
approval has been granted by Health Research Authorities
and the South London Research Ethics Committee (REC:
19/LO/1933). The study is funded by the British Heart Foun-
dation (PG/19/44/34368).
FLA 5.6.0 DTD � HROO199_proof �
Trial design
A total of 92 patients will be recruited to undergo a CMR scan
for investigation of features suggestive of left atrial remodel-
ing. This will be followed by implantation of an ILR as stan-
dard of care for detection of AF as per the 2021 NICE
guidelines.27 Remote ILR follow-up will occur at 6 months,
1 year, 2 years, and 3 years as part of this study. Throughout
the study period routine follow-up will be conducted by daily
telemetric monitoring using the Reveal CareLink system
(Medtronic). Patients in whom AF has been detected will
be allocated to the study group and patients in whom AF
has not been detected will be allocated to the control group
(Figure 1). Group allocation will be determined by 2 indepen-
dent experts.

Sample size justification
Previous data suggest that ILR monitoring will identify
AF in 25% of ESUS patients with a CHA2DS2VASc score
of 3.2 We anticipate that our study population will have a
3:1 ratio of non-AF and AF patients. This ratio has subse-
quently been validated in the recent LOOP study.28

Pilot data analysis was performed using CEMRGapp, us-
ing the image intensity ratio to define atrial fibrosis at image
intensity ratio .0.97.29 This analysis suggested a popula-
tion mean difference of 6% in left atrial LGE burden be-
tween AF and non-AF patients, with standard deviations
of 9% and 4% in the AF and non-AF group, respectively
(Figure 2). For estimating the sample size required to detect
a difference in LGE burden between stroke patients with and
without AF, we allow for unequal variances and assume that
cases (AF on ILR monitoring) represent 25% of the study
population while controls (no AF on ILR monitoring) repre-
sent 75% of the study population. Group sample sizes of 21
and 63 would achieve 80.8% power to reject the null hy-
pothesis of equal means when the population mean differ-
ence is m1 2 m2 5 47.0 2 41.0 5 6.0, with standard
deviations of 9.0 for group 1 and 4.0 for group 2, and
with a significance level (alpha) of 0.05 using a 2-sided 2-
sample unequal-variance t test.

For estimating the sample size required to detect a dif-
ference in sphericity between stroke patients with and
without AF, we again assume cases and controls represent
25% and 75% of the study population, respectively. Group
sample sizes of 14 and 42 would achieve 82.5% power to
reject the null hypothesis of equal means when the popu-
lation mean difference is m1 2 m2 5 80.0 2 77.0 5 3.0,
with a standard deviation for both groups of 3.3 and with a
significance level (alpha) of 0.05 using a 2-sided 2-sample
equal-variance t test. Taking the larger of these estimates
and allowing for 10% loss to follow-up indicates that a
sample size of 92 patients is required for this study.
With this sample size, assuming the 3:1 ratio of non-AF
to AF individuals we would be able to estimate the area
under the curve of a receiver operating characteristic
(ROC) curve with 95% confidence interval width (upper-
lower confidence limit) of between 0.21 and 0.28 for
342
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Figure 1 Trial flowchart. AF 5 atrial fibrillation; CMR 5 cardiac magnetic resonance; GSTT 5 Guy’s and St Thomas’ Hospital; ILR 5 implantable loop
recorder.
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area-under-the-curve values between 0.85 and 0.65,
respectively.
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Eligibility
Potential research participants who meet the eligibility
criteria (Table 1) are identified on the stroke unit or in
the transient ischemic attack outpatient clinic. All patients
undergo a minimum set of diagnostic investigations to
assess eligibility, including brain imaging confirming
ischemic stroke (computed tomography / magnetic reso-
nance imaging [MRI]), vascular imaging (head and neck),
and a minimum of 24 hours of heart rhythm monitoring
(telemetry/24-hour Holter). Patients in whom the stroke eti-
ology is determined after study inclusion (for example, if a
cause of stroke is identified via CMR imaging) will be
excluded from final analysis.
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Consent
If eligible for recruitment, patients are informed about the
study, and a Patient Information Sheet and Informed Consent
Form is provided. Capacity to consent is assessed by the pa-
tient’s clinical team and should the patient be unable to pro-
vide written informed consent, study information is provided
to a consultee (next of kin) and assent is subsequently ob-
tained from the patient with the consultee acting as a patient
Figure 2 Atrial cardiac magnetic resonance (CMR) pilot data in stroke and cont
patients (n5 8). A: Raw data and processed data appearances. B: Late gadolinium
ranges, and data ranges. IIR 5 image intensity ratio; LA 5 left atrium.
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advocate. Patients are recruited via both methods in order to
preserve the heterogeneity of the study population.

Baseline data collection
On enrollment, patient data collected includes patient demo-
graphics, preexisting medical history, CHA2DS2VASc score,
and data from relevant stroke investigations (routine blood
panel, carotid Dopplers, computed tomography / MRI brain).

Noninvasive electrophysiological data
All patients will undergo a 12-lead surface ECG and 24 hours
of heart rhythmmonitoring using telemetry or 24-hour Holter
prior to insertion of an ILR (LINQ; Medtronic Q). Electrocar-
diographic metrics to be assessed include mean heart rate,
atrial high rate episodes, atrial ectopy burden, PTFV1, and
PR interval.

Cardiac magnetic resonance imaging
CMR imaging is performed within 3 months of the index
stroke and prior to ILR implantation. All imaging is
performed on a 1.5 Tesla clinical MRI scanner. Localizer
scans are acquired in the 3 standard imaging planes (sagittal,
coronal, and transverse), followed by vertical long-axis, hor-
izontal long-axis, and short-axis imaging. Cine imaging of
the 4-chamber and 2-chamber views are acquired in
rol patients. Illustration of atrial CMR findings in stroke (n 5 8) and control
enhancement and sphericity quantification illustrating medians, interquartile
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Table 1 Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

� Patient consent or assent can be obtained
� Confirmed acute ischemic stroke with evidence on brain CT
and/or MRI within 3 months of study enrollment

� Ischemic stroke of unknown source with brain imaging
suspicious for embolic etiology

� Expected survival .12 months
� At least 1 additional stroke risk factor (ie, CHA2DS2VASc �3)
� Sinus rhythm on 12-lead ECG, 24 hours of heart rhythm
monitoring (telemetry/Holter), and a regular pulse on clinical
examination

� Above 18 years of age

� Unable to obtain patient consent or assent
� History of atrial fibrillation
� Atrial fibrillation detected on ECG and/or telemetry/Holter
(AF duration of at least 30 seconds required for diagnosis),
eGFR ,30 mL/min

� Indication for pacemaker/implantable cardioverter-defibrillator
� Contraindication to undergo cardiac MRI (eg, severe
claustrophobia, unable to lie flat for prolonged period,
ferromagnetic implant)

� Carotid stenosis .50% on duplex ultrasound associated with
anterior circulation infarction

� Vertebrobasilar stenosis .50% on CT/MR angiography associated
with posterior circulation infarction

� Single, isolated lacunar stroke with a corresponding lacunar
infarct on brain CT/MRI

� Specific etiology for cause of stroke (eg, arteritis, dissection, drug
abuse)

AF 5 atrial fibrillation; CT 5 cardiac tomography; ECG 5 electrocardiogram; MR 5 magnetic resonance; MRI 5 magnetic resonance imaging.
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end-expiration using a standard balanced steady-state free
presession cine technique.

Gadolinium (Gadovist; Bayer HealthCare Pharmaceuti-
cals, Berlin, Germany) is administered at 0.2 mmol/kg at a
rate of 0.3 mL/s followed by 30 mL normal saline flush.
Following gadolinium, an ECG-triggered, contrast-enhanced
magnetic resonance angiogram (CE-MRA) 3D dataset is ac-
quired to delineate the left atrial endocardial border 90 sec-
onds after gadolinium administration, after which a full
short-axis stack including the ventricles and atria is acquired.

For LGE imaging, the inversion time is determined from a
multiphase inversion time mapping sequence (TI-Scout/
Look-locker) performed immediately prior to each LGE
scan to ensure adequate nulling of ventricular myocardium.
Two separate sequences are used to acquire LGE imaging:
a respiratory-navigated sequence and an image-navigated
sequence. Respiratory navigator artefacts are a limitation of
left atrial imaging that the image-navigated sequence seeks
to eliminate.

For image-navigated imaging, an ECG-triggered free-
breathing image-navigated dual-echo 3D inversion recovery
spoiled gradient echo sequence (iNav LGE) is acquired 15–
20 minutes after gadolinium administration according to
our previous sequence optimization and routine clinical prac-
tice for preablation atrial imaging at our institution.30 The 2D
image navigators enable data collection throughout respira-
tion, ensuring no data rejection and significantly reducing
scan time and, subsequently, motion artefact. Dual echo
readout allows for water and fat separation, providing LGE
images of both fat suppression and fat distribution.31

Coverage includes the left and right atrium. Typical parame-
ters are as follows: TR 7.16 ms, TE 2.38/4.76 ms, flip angle
20�, centric k-space ordering, 1.3 ! 1.3 ! 4 mm3 acquired
voxel size with interpolation to 1.3 ! 1.3 ! 2 mm3 during
reconstruction, SPIR fat suppression, anterior-posterior
phase encoding direction.
FLA 5.6.0 DTD � HROO199_proof �
For respiratory-navigated imaging, a second LGE
sequence is performed 20–25 minutes after gadolinium
enhancement. This comprises an ECG-triggered free-breath-
ing diaphragmatic navigated 3D inversion recovery spoiled
gradient echo sequence (dNav LGE) that conforms to current
clinical standards within our institution for atrial imaging.
Coverage includes the left and right atrium. Typical parame-
ters are as follows: TR 4.2 ms, TE 1.8 ms, flip angle 20�,
centric k-space ordering, 1.3! 1.3! 4 mm3 acquired voxel
size with interpolation to 1.3 ! 1.3 ! 2 mm3 during image
reconstruction, SPIR fat suppression, anterior-posterior
phase encoding direction, navigator gating acceptance win-
dow of 5 mm in end-expiration.

For all 3 of the 3D sequences (CE-MRA, iNav LGE,
dNav LGE) subject-specific trigger delay and acquisition
window are identified using the 4-Chamber cine image to
identify atrial diastole and reduce cardiac motion artefact.
The field of view is identical in both LGEs and the CE-
MRA to facilitate registration between the images during
postprocessing.

Primary structural metrics collected from CMR imaging
include left atrial surface area and volume, visual and quan-
titative LGE assessment, and sphericity. Secondary anatom-
ical metrics collected include left atrial appendage orifice size
and flow.
Image postprocessing
All CMR scans are postprocessed shortly after acquisition
prior to completion of ILR follow-up, patient group assign-
ment, and, where relevant, exclusion of patients owing to
the identification of a secondary cause of stroke on CMR
imaging (see Eligibility, above). This approach is taken in or-
der to eliminate any potential postprocessing bias after study/
control group allocation. Postprocessing is performed
using the previously validated open-source Cardiac
4 February 2022 � 7:23 pm � ce
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Figure 3 Work flow for postprocessing of iNav late gadolinium enhancement (LGE) imaging. MRA 5 magnetic resonance angiography; R 5 registration Q9.
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Electro-Mechanics Research Group App (CEMRG) platform
(http://www.cemrg.co.uk).32 Imaging is reinterpolated to 1
! 1 ! 1 mm3.33 A total of 8–12 semiautomatic axial seg-
mentations of the atrial blood pool are then performed using
the CE-MRA image and interpolated to reconstruct a 3D
atrial shell. Rigid body registration is then used to align the
CE-MRA and dNav LGE image. This is performed by iden-
tifying the rotations and translations required to optimize the
normalized mutual information as the similarity measure of
the 2 images giving rise to a displacement field. This is
then used to transform the CE-MRA segmentation and over-
lay it with the dNav LGE image for review of image align-
ment. In case of malalignment, segmentation is performed
using the dNav image directly.

Next, the pulmonary veins and appendage are removed
from the atrial shell. The distal end of each pulmonary
vein and the left atrial appendage are manually tagged.
Center lines are formed from these points and converge
to a central point in the body of the left atrium. Pulmonary
vein/appendage clippers are then displayed perpendicular
to the entry of the vein/appendage into the body of the
left atrium. This is defined by the rate of increase of the
cross-section area of the vein/appendage, starting from
the distal end of the vein/appendage and toward the atrial
body. As the cross-section approaches the atrial body, its
area increases substantially; this inflection is used to iden-
tify the opening of the chamber. Clippers can be manually
adjusted prior to removal of the pulmonary veins/atrial
appendage.

The last step prior to analysis is clipping of the mitral
valve. In order to provide a clipping plane, the valve is
viewed en face and 3 points around the valve are selected
at 3, 7, and 10 o’clock to create a best-fit circle that is subse-
quently used as the orthodrome of a spherical clipper. The
clipper is then manually reviewed for accuracy of valve posi-
tioning prior to valve removal.
FLA 5.6.0 DTD � HROO199_proof �
Fibrosis assessment
The dNav LGE image is then interrogated and an LGE map
generated using a maximum-intensity projection technique
whereby a 3 mm external projection and 1 mm internal pro-
jection is used by default to adequately capture the full thick-
ness of the atrial wall and to account for minor misalignment
between the CE-MRA and LGE imaging. To quantify LGE, a
blood pool segmentation is derived using a 3-voxel size
erosion of the previously segmented left atrial body. Mean
and standard deviation of blood pool signal intensity are
automatically calculated and are used as reference values.
LGE assessment is then performed using the image intensity
ratio method using a range of predefined thresholds.34 ROC
analysis will be performed to delineate the optimal image in-
tensity ratio for use within the predictive model for identifica-
tion of study vs control group allocation.
Sphericity assessment
Atrial sphericity is automatically calculated using the left
atrial sphericity predictor method.20 A best-fit sphere of the
left atrium is calculated using the center of mass determined
by the average radius of all left atrial wall points. The coeffi-
cient of variation of the sphere is then used to identify the
best-fit sphere. The deviation of the segmented atrial body
from the best-fit sphere is then calculated to quantify
sphericity.
Additional postprocessing for assessment of iNav LGE imaging
An additional registration step is performed for alignment of
the CE-MRA atrial segmentation and iNav LGE image. Pul-
monary vein, left atrial appendage, and mitral valve clipping
planes are registered and transformed from the dNav LGE
image and overlaid to the iNav LGE image using the same
image registration and transformation techniques described
earlier. An LGE map can then be created and LGE and
4 February 2022 � 7:23 pm � ce
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sphericity quantified as performed for dNav LGE imaging for
comparison (Figure 3).

Implantable loop recorder programming
All patients receive a Reveal LINQ (Medtronic) ILR device
as per routine clinical care for detection of AF. Nominals
are set to detect increased sensitivity of AF detection
threshold, aggressive ectopy rejection, and storage of all
AF/AT episodes to maximize AF detection. AF is detected
following 2 minutes of ILR monitoring as per the Medtronic
AF detection algorithm. Each episode will be reviewed by 2
independent experts prior to study/control group allocation.
Daily remote data collection will occur as part of routine clin-
ical care.
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Data analysis
Primary analysis will be performed following 12 months of
continuous ILR monitoring with interim and delayed ana-
lyses performed at 6 months and 2 and 3 years, respectively.
Descriptive statistics will be used to characterize the study
population. Structural and electrocardiographic metrics will
be summarized. Results will be reported as a comparison be-
tween the standard deviation and mean difference. If groups
show a normal distribution, t test will be performed to assess
for a significant difference between groups; otherwise, a
Mann-Whitney U test will be used. The c2 test will be used
for categorical data. Any P value ,.05 will be considered
significant. For qualitative assessment of LGE, patients will
be categorized as per our routine clinical practice using com-
bined assessment of both LGE methods as none, mild, mod-
erate, or severe LGE. Survival analysis will be performed
using Kaplan-Meier curves with atrial fibrillation as the
outcome measure. For qualitative assessment of atrial LGE,
our open-source platform, CEMRGApp, will be used to
create LGE scores. ROC analysis will be used to determine
if there is a quantitative LGE cut-off with adequate specificity
and sensitivity to detect atrial fibrillation during follow-up.
To combine these variables into a single score, the use of lo-
gistic regression, shallow classifiers, atrial computational
modeling, or combining variables using summated z-scores
will be explored to improve the predictive value for AF.
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Trial significance
At present, there is limited published data regarding
advanced atrial CMR imaging in either non-AF patients or
ESUS patients. The CARM-AF Study will provide novel in-
formation regarding the difference in structural and electrical
remodeling in patients with and without AF. Several large
randomized controlled trials including CRYSTAL-AF and
ROCKET-AF provide evidence to support prolonged heart
rhythm monitoring in ESUS patients. The most recent 2021
NICE guidelines advocate the use of ILR implantation as a
diagnostic aid to improve AF detection but continues to
rely on a diagnosis of AF for initiation of anticoagulation
in the ESUS population. We aim to produce a substrate-
based model that can be used to predict ESUS patients at
FLA 5.6.0 DTD � HROO199_proof �
higher risk of AF, allowing for initiation of anticoagulation
at the time of stroke, rather than relying on future clinical
arrhythmia detection. Furthermore, this would negate the
need for ILR insertion and follow-up, resulting in a signifi-
cant reduction in cost burden and use of limited resources.

We anticipate that this study will form the basis of a ran-
domized controlled trial with the potential to revolutionize
poststroke care in ESUS patients, where patients are antico-
agulated on the basis of atrial substrate rather than the pres-
ence or absence of an AF clinical diagnosis.
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