4 research outputs found
Structure, stability and elasticity of DNA nanotube
DNA nanotubes are tubular structures composed of DNA crossover molecules. We
present a bottom up approach for construction and characterization of these
structures. Various possible topologies of nanotubes are constructed such as
6-helix, 8-helix and tri-tubes with different sequences and lengths. We have
used fully atomistic molecular dynamics simulations to study the structure,
stability and elasticity of these structures. Several nanosecond long MD
simulations give the microscopic details about DNA nanotubes. Based on the
structural analysis of simulation data, we show that 6-helix nanotubes are
stable and maintain their tubular structure; while 8-helix nanotubes are
flattened to stabilize themselves. We also comment on the sequence dependence
and effect of overhangs. These structures are approximately four times more
rigid having stretch modulus of ~4000 pN compared to the stretch modulus of
1000 pN of DNA double helix molecule of same length and sequence. The stretch
moduli of these nanotubes are also three times larger than those of PX/JX
crossover DNA molecules which have stretch modulus in the range of 1500-2000
pN. The calculated persistence length is in the range of few microns which is
close to the reported experimental results on certain class of the DNA
nanotubes.Comment: Published in Physical Chemistry Chemical Physic