2 research outputs found

    Progress in EBV Vaccines

    Get PDF
    The Epstein-Barr virus (EBV) is a ubiquitous pathogen that imparts a significant burden of disease on the human population. EBV is the primary cause of infectious mononucleosis and is etiologically linked to the development of numerous malignancies. In recent years, evidence has also been amassed that strongly implicate EBV in the development of several autoimmune diseases, including multiple sclerosis. Prophylactic and therapeutic vaccination has been touted as a possible means of preventing EBV infection and controlling EBV-associated diseases. However, despite several decades of research, no licensed EBV vaccine is available. The majority of EBV vaccination studies over the last two decades have focused on the major envelope protein gp350, culminating in a phase II clinical trial that showed soluble gp350 reduced the incidence of IM, although it was unable to protect against EBV infection. Recently, novel vaccine candidates with increased structural complexity and antigenic content have been developed. The ability of next generation vaccines to safeguard against B-cell and epithelial cell infection, as well as to target infected cells during all phases of infection, is likely to decrease the negative impact of EBV infection on the human population

    Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice.

    No full text
    The ubiquitous Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is etiologically linked to the development of several malignancies and autoimmune diseases. EBV has a multifaceted life cycle that comprises virus lytic replication and latency programs. Considering EBV infection holistically, we rationalized that prophylactic EBV vaccines should ideally prime the immune system against lytic and latent proteins. To this end, we generated highly immunogenic particles that contain antigens from both these cycles. In addition to stimulating EBV-specific T cells that recognize lytic or latent proteins, we show that the immunogenic particles enable the ex vivo expansion of cytolytic EBV-specific T cells that efficiently control EBV-infected B cells, preventing their outgrowth. Lastly, we show that immunogenic particles containing the latent protein EBNA1 afford significant protection against wild-type EBV in a humanized mouse model. Vaccines that include antigens which predominate throughout the EBV life cycle are likely to enhance their ability to protect against EBV infection
    corecore