942 research outputs found
Neutrino spin oscillations in gravitational fields
We study neutrino spin oscillations in gravitational fields. The
quasi-classical approach is used to describe the neutrino spin evolution. First
we examine the case of a weak gravitational field. We obtain the effective
Hamiltonian for the description of neutrino spin oscillations. We also receive
the neutrino transition probability when a particle propagates in the
gravitational field of a rotating massive object. Then we apply the general
technique to the description of neutrino spin oscillations in the Schwarzschild
metric. The neutrino spin evolution equation for the case of the neutrino
motion in the vicinity of a black hole is obtained. The effective Hamiltonian
and the transition probability are also derived. We examine the neutrino
oscillations process on different circular orbits and analyze the frequencies
of spin transitions. The validity of the quasi-classical approach is also
considered.Comment: RevTeX4, 9 pages, 1 esp figure; article was revised, some misprints
were corrected, 6 references added; accepted for publication in
Int.J.Mod.Phys.
Neutrino spin relaxation in medium with stochastic characteristics
The helicity evolution of a neutrino interacting with randomly moving and
polarized matter is studied. We derive the equation for the averaged neutrino
helicity. The type of the neutrino interaction with background fermions is not
fixed. In the particular case of a tau-neutrino interacting with
ultrarelativistic electron-positron plasma we obtain the expression for the
neutrino helicity relaxation rate in the explicit form. We study the neutrino
spin relaxation in the relativistic primordial plasma. Supposing that the
conversion of left-handed neutrinos into right-handed ones is suppressed at the
early stages of the Universe evolution we get the upper limit on the
tau-neutrino mass.Comment: 6 pages, RevTeX4; 2 references added; more detailed discussion of
correlation functions and cosmological neutrinos is presented; version to be
published in Int. J. Mod. Phys.
Parametric Resonance of Neutrino Oscillations in Electromagnetic Wave
Within the Lorentz invariant formalizm for description of neutrino evolution
in electromagnetic fields and matter we consider neutrino spin oscillations in
the circular polarized electromagnetic wave, the amplitude of which is a
modulated function of time. It is shown for the first time that the parametric
resonance of neutrino oscillations can occur in such a system.Comment: The enlarged version of contribution to the Proceedings of the Third
International Workshop on New Worlds in Astroparticle Physics (Faro, 2000
Formation of bound states of electrons in spherically symmetric oscillations of plasma
We study spherically symmetric oscillations of electrons in plasma in the
frame of classical electrodynamics. Firstly, we analyze the electromagnetic
potentials for the system of radially oscillating charged particles. Secondly,
we consider both free and forced spherically symmetric oscillations of
electrons. Finally, we discuss the interaction between radially oscillating
electrons through the exchange of ion acoustic waves. It is obtained that the
effective potential of this interaction can be attractive and can transcend the
Debye-Huckel potential. We suggest that oscillating electrons can form bound
states at the initial stages of the spherical plasma structure evolution. The
possible applications of the obtained results for the theory of natural
plasmoids are examined.Comment: 9 pages in LaTeX2e, no figures; paper was significantly modified, 2
new references added, some inessential mathematics was removed, many typos
were corrected; final variant to be published in Physica Script
Long-lived plasma formations in the atmosphere as an alternative energy source
A model of a stable plasma formation, based on radial quantum oscillations of
charged particles, is discussed. The given plasmoid is described with the help
of the nonlinear Schr\"odinger equation. A new phenomenon of the effective
attraction between oscillating charged particles is considered within the
framework of the proposed model. The possible existence of a composite plasma
structure is also discussed. Hypothesis about using the obtained results to
describe natural long-lived plasma formations, which can serve as alternative
energy sources, is put forward.Comment: 6 pages in pdf; mini review to be published in Russian Physics
Journa
Diagnostic of electromagnetic conditions in space using cosmic rays
The method of spectrographic global survey was used to study the time variations in parameters of cosmic ray (CR) pitch angle anisotropy and their relationship with the variations of some solar wind characteristics under different electromagnetic conditions in interplanetary space. A classification is made of the conditions that are accompanied by the increase in CR anisotropy
Spin light of neutrino in gravitational fields
We predict a new mechanism for the spin light of neutrino () that can
be emitted by a neutrino moving in gravitational fields. This effect is studied
on the basis of the quasiclassical equation for the neutrino spin evolution in
a gravitational field. It is shown that the gravitational field of a rotating
object, in the weak-field limit, can be considered as an axial vector external
field which induces the neutrino spin procession. The corresponding probability
of the neutrino spin oscillations in the gravitational field has been derived
for the first time. The considered in this paper can be produced in the
neutrino spin-flip transitions in gravitational fields. It is shown that the
total power of this radiation is proportional to the neutrino gamma factor to
the fourth power, and the emitted photon energy, for the case of an ultra
relativistic neutrino, could span up to gamma-rays. We investigate the
caused by both gravitational and electromagnetic fields, also accounting for
effects of arbitrary moving and polarized matter, in various astrophysical
environments. In particular, we discuss the emitted by a neutrino
moving in the vicinity of a rotating neutron star, black hole surrounded by
dense matter, as well as by a neutrino propagating in the relativistic jet from
a quasar.Comment: 14 pages in LaTex with 1 eps figure; derivation of the neutrino spin
oscillations probability in gravitational fields and several clarifying notes
are added, typos correcte
Diurnal variations of cosmic ray geomagnetic cut-off threshold rigidities
The spectrographic global survey method was used to investigate the rigidity variations Rc of geomagnetic cut-off as a function of local time and the level of geomagnetic disturbance for a number of stations of the world wide network. It is shown that geomagnetic cut-off threshold rigidities undergo diurnal variations. The diurnal wave amplitude decreases with increasing threshold rigidity Rc, and the wave maximum occurs at 2 to 4 hr LT. The amplitude of diurnal variations increases with increasing geomagnetic activity. The results agree with those from trajectory calculations made for an asymmetric model of the magnetosphere during different geomagnetic disturbance conditions
Neutrino spin evolution in presence of general external fields
The derivation of the quasiclassical Lorentz invariant neutrino spin
evolution equation taking into account general types of neutrino non-derivative
interactions with external fields is presented. We discuss the constraints on
the characteristics of matter and neutrino under which this quasiclassical
approach is valid. The application of the obtained equation for the case of the
Standard Model neutrino interactions with moving and polarized background
matter is considered.Comment: The form of the article has been sufficiently improve
- …