47 research outputs found

    An objective spinal motion imaging assessment (OSMIA): reliability, accuracy and exposure data

    Get PDF
    BACKGROUND: Minimally-invasive measurement of continuous inter-vertebral motion in clinical settings is difficult to achieve. This paper describes the reliability, validity and radiation exposure levels in a new Objective Spinal Motion Imaging Assessment system (OSMIA) based on low-dose fluoroscopy and image processing. METHODS: Fluoroscopic sequences in coronal and sagittal planes were obtained from 2 calibration models using dry lumbar vertebrae, plus the lumbar spines of 30 asymptomatic volunteers. Calibration model 1 (mobile) was screened upright, in 7 inter-vertebral positions. The volunteers and calibration model 2 (fixed) were screened on a motorised table comprising 2 horizontal sections, one of which moved through 80 degrees. Model 2 was screened during motion 5 times and the L2-S1 levels of the volunteers twice. Images were digitised at 5fps. Inter-vertebral motion from model 1 was compared to its pre-settings to investigate accuracy. For volunteers and model 2, the first digitised image in each sequence was marked with templates. Vertebrae were tracked throughout the motion using automated frame-to-frame registration. For each frame, vertebral angles were subtracted giving inter-vertebral motion graphs. Volunteer data were acquired twice on the same day and analysed by two blinded observers. The root-mean-square (RMS) differences between paired data were used as the measure of reliability. RESULTS: RMS difference between reference and computed inter-vertebral angles in model 1 was 0.32 degrees for side-bending and 0.52 degrees for flexion-extension. For model 2, X-ray positioning contributed more to the variance of range measurement than did automated registration. For volunteer image sequences, RMS inter-observer variation in intervertebral motion range in the coronal plane was 1.86 degreesand intra-subject biological variation was between 2.75 degrees and 2.91 degrees. RMS inter-observer variation in the sagittal plane was 1.94 degrees. Radiation dosages in each view were below the levels recommended for a plain film. CONCLUSION: OSMIA can measure inter-vertebral angular motion patterns in routine clinical settings if modern image intensifier systems are used. It requires skilful radiography to achieve optimal positioning and dose limitation. Reliability in individual subjects can be judged from the variance of their averaged inter-vertebral angles and by observing automated image registration

    Lumbar segmental mobility disorders: comparison of two methods of defining abnormal displacement kinematics in a cohort of patients with non-specific mechanical low back pain

    Get PDF
    BACKGROUND: Lumbar segmental rigidity (LSR) and lumbar segmental instability (LSI) are believed to be associated with low back pain (LBP), and identification of these disorders is believed to be useful for directing intervention choices. Previous studies have focussed on lumbar segmental rotation and translation, but have used widely varying methodologies. Cut-off points for the diagnosis of LSR & LSI are largely arbitrary. Prevalence of these lumbar segmental mobility disorders (LSMDs) in a non-surgical, primary care LBP population has not been established. METHODS: A cohort of 138 consecutive patients with recurrent or chronic low back pain (RCLBP) were recruited in this prospective, pragmatic, multi-centre study. Consenting patients completed pain and disability rating instruments, and were referred for flexion-extension radiographs. Sagittal angular rotation and sagittal translation of each lumbar spinal motion segment was measured from the radiographs, and compared to a reference range derived from a study of 30 asymptomatic volunteers. In order to define reference intervals for normal motion, and define LSR and LSI, we approached the kinematic data using two different models. The first model used a conventional Gaussian definition, with motion beyond two standard deviations (2sd) from the reference mean at each segment considered diagnostic of rotational LSMD and translational LSMD. The second model used a novel normalised within-subjects approach, based on mean normalised contribution-to-total-lumbar-motion. An LSMD was then defined as present in any segment that contributed motion beyond 2sd from the reference mean contribution-to-normalised-total-lumbar-motion. We described reference intervals for normal segmental mobility, prevalence of LSMDs under each model, and the association of LSMDs with pain and disability. RESULTS: With the exception of the conventional Gaussian definition of rotational LSI, LSMDs were found in statistically significant prevalences in patients with RCLBP. Prevalences at both the segmental and patient level were generally higher using the normalised within-subjects model (2.8 to 16.8% of segments; 23.3 to 35.5% of individuals) compared to the conventional Gaussian model (0 to 15.8%; 4.7 to 19.6%). LSMDs are associated with presence of LBP, however LSMDs do not appear to be strongly associated with higher levels of pain or disability compared to other forms of non-specific LBP. CONCLUSION: LSMDs are a valid means of defining sub-groups within non-specific LBP, in a conservative care population of patients with RCLBP. Prevalence was higher using the normalised within-subjects contribution-to-total-lumbar-motion approach

    Intra-subject repeatability of in vivo intervertebral motion parameters using quantitative fluoroscopy.

    Get PDF
    Purpose: In vivo quantification of intervertebral motion through imaging has progressed to a point where biomarkers for low back pain are emerging. This makes possible deeper study of the condition’s biometrics. However, the measurement of change over time involves error. The purpose of this prospective investigation is to determine the intra-subject repeatability of six in vivo intervertebral motion parameters using quantitative fluoroscopy. Methods: Intra-subject reliability (ICC) and minimal detectable change (MDC) of baseline to 6-week follow-up measurements were calculated for 6 lumbar spine intervertebral motion parameters in 109 healthy volunteers. A standardised quantitative fluoroscopy (QF) protocol was used to provide measurements in the coronal and sagittal planes using both passive recumbent and active weight bearing motion. Parameters were: intervertebral range of motion (IV-RoM), laxity, motion sharing inequality (MSI), motion sharing variability (MSV), flexion translation, and anterior disc height change during flexion. Results: The best overall intra subject reliability (ICC) and agreement (MDT) were for disc height (ICC 0.89, MDC 43%) and IV-RoM (ICC 0.96, MDC 60%) and the worst for MSV (ICC 0.04, MCD 408%). Laxity, MSI and translation had acceptable reliability (most ICCs >0.60), but not agreement (MDC >85%). Conclusion: Disc height and IV-RoM measurement using QF could be considered for randomised trials while laxity, MSI and translation could be considered for moderators, correlates or mediators of patient reported outcomes. MSV had both poor reliability and agreement over 6 weeks
    corecore