159 research outputs found

    Formation and evolution of cosmic D-strings

    Full text link
    We study the formation of D and F-cosmic strings in D-brane annihilation after brane inflation. We show that D-string formation by quantum de Sitter fluctuations is severely suppressed, due to suppression of RR field fluctuations in compact dimensions. We discuss the resonant mechanism of production of D and F-strings, which are formed as magnetic and electric flux tubes of the two orthogonal gauge fields living on the world-volume of the unstable brane. We outline the subsequent cosmological evolution of the D-F string network. We also compare the nature of these strings with the ordinary cosmic strings and point out some differences and similarities.Comment: Added discussion and reference

    Solitonic D-branes and brane annihilation

    Full text link
    We point out some intriguing analogies between field theoretic solitons (topological defects) and D-branes. Annihilating soliton-antisoliton pairs can produce stable solitons of lower dimensionality. Solitons that localize massless gauge fields in their world volume automatically imply the existence of open flux tubes ending on them and closed flux tubes propagating in the bulk. We discuss some aspects of this localization on explicit examples of unstable wall-anti-wall systems. The annihilation of these walls can be described in terms of tachyon condensation which renders the world-volume gauge field non-dynamical. During this condensation the world volume gauge fields (open string states) are resonantly excited. These can later decay into closed strings, or get squeezed into a network flux tubes similar to a network of cosmic strings formed at a cosmological phase transition. Although, as in the DD-brane case, perturbatively one can find exact time-dependent solutions, when the energy of the system stays localized in the plane of the original soliton, such solutions are unstable with respect to decay into open and closed string states. Thus, when a pair of such walls annihilates, the energy is carried away (at least) by closed string excitations (``glueballs''), which are the lowest energy excitations about the bulk vacuum. Suggested analogies can be useful for the understanding of the complicated D-brane dynamics and of the production of topological defects and reheating during brane collision in the early universe.Comment: a typo correcte

    Quantum effects in gravitational wave signals from cuspy superstrings

    Get PDF
    We study the gravitational emission, in Superstring Theory, from fundamental strings exhibiting cusps. The classical computation of the gravitational radiation signal from cuspy strings features strong bursts in the special null directions associated to the cusps. We perform a quantum computation of the gravitational radiation signal from a cuspy string, as measured in a gravitational wave detector using matched filtering and located in the special null direction associated to the cusp. We study the quantum statistics (expectation value and variance) of the measured filtered signal and find that it is very sharply peaked around the classical prediction. Ultimately, this result follows from the fact that the detector is a low-pass filter which is blind to the violent high-frequency quantum fluctuations of both the string worldsheet, and the incoming gravitational field.Comment: 16 pages, no figur

    Diluting Cosmological Constant In Infinite Volume Extra Dimensions

    Get PDF
    We argue that the cosmological constant problem can be solved in a braneworld model with infinite-volume extra dimensions, avoiding no-go arguments applicable to theories that are four-dimensional in the infrared. Gravity on the brane becomes higher-dimensional at super-Hubble distances, which entails that the relation between the acceleration rate and vacuum energy density flips upside down compared to the conventional one. The acceleration rate decreases with increasing the energy density. The experimentally acceptable rate is obtained for the energy density larger than (1 TeV)4^4. The results are stable under quantum corrections because supersymmetry is broken only on the brane and stays exact in the bulk of infinite volume extra space. Consistency of 4D gravity and cosmology on the brane requires the quantum gravity scale to be around 10310^{-3} eV. Testable predictions emerging within this approach are: (i) simultaneous modifications of gravity at sub-millimeter and the Hubble scales; (ii) Hagedorn-type saturation in TeV energy collisions due to the Regge spectrum with the spacing equal to 10310^{-3} eV.Comment: 36 pages, 1 eps fig; 4 refs and comment adde

    Membranes in the two-Higgs standard model

    Get PDF
    We present some non-topological static wall solutions in two-Higgs extensions of the standard model. They are classically stable in a large region of parameter space, compatible with perturbative unitarity and with present phenomenological bounds.Comment: 7 pages, latex, 3 figures available upon reques

    Inflating magnetically charged braneworlds

    Full text link
    Numerical solutions of Einstein, scalar, and gauge field equations are found for static and inflating defects in a higher-dimensional spacetime. The defects have (3+1)(3+1)-dimensional core and magnetic monopole configuration in n=3n=3 extra dimensions. For symmetry-breaking scale η\eta below the critical value ηc\eta_c, the defects are characterized by a flat worldsheet geometry and asymptotically flat extra dimensions. The critical scale ηc\eta_c is comparable to the higher-dimensional Planck scale and has some dependence on the gauge and scalar couplings. For η=ηc\eta=\eta_c, the extra dimensions degenerate into a `cigar', and for η>ηc\eta>\eta_c all static solutions are singular. The singularity can be removed if the requirement of staticity is relaxed and defect cores are allowed to inflate. The inflating solutions have de Sitter worldsheets and cigar geometry in the extra dimensions. Exact analytic solutions describing the asymptotic behavior of these inflating monopoles are found and the parameter space of these solutions is analyzed.Comment: 35 pages, revtex, 18 eps figure

    Topologically Stable Electroweak Flux Tube

    Full text link
    We show that for a large range of parameters in a SU(2)L×U(1)SU(2)_L\times U(1) electroweak theory with two Higgs doublets there may exist classically stable flux tubes of Z boson magnetic field. In a limit of an extra global U~(1)\tilde U(1) symmetry, these flux-tubes become topologically stable. These results are automatically valid even if U~(1)\tilde U(1) is gauged.Comment: 10 pages, LATE

    Bogomol'nyi Bounds for Gravitational Cosmic Strings

    Full text link
    We present a new method for finding lower bounds on the energy of topological cosmic string solutions in gravitational field theories. This new method produces bounds that are valid over the entire space of solutions, unlike the traditional approach, where the bounds obtained are only valid for cylindrically symmetric solutions. This method is shown to be a generalisation of the well-known Bogomol'nyi procedure for non-gravitational theories and as such, it can be used to find gravitational Bogomol'nyi bounds for models wherever the traditional Bogomol'nyi procedure can be applied in the non-gravitational limit. Furthermore, this method yields Bogomol'nyi equations that do not rule out the existence of asymmetric bound-saturating solutions.Comment: 17 pages - final version (accepted for publication in JHEP

    Stealth Branes

    Get PDF
    We discuss the brane world model of Dvali, Gabadadze and Porrati in which branes evolve in an infinite bulk and the brane curvature term is added to the action. If Z_2 symmetry between the two sides of the brane is not imposed, we show that the model admits the existence of "stealth branes" which follow the standard 4D internal evolution and have no gravitational effect on the bulk space. Stealth branes can nucleate spontaneosly in a Minkowski bulk. This process is described by the standard 4D quantum cosmology formalism with tunneling boundary conditions for the brane world wave function. The notorious ambiguity in the choice of boundary conditions is fixed in this case due to the presence of the embedding spacetime. We also point to some problematic aspects of models admitting stealth brane solutions.Comment: 24 pages; Final version, to appear in Phys. Rev. D. The discussion of "embeddability obstruction" is removed (thanks to Takahiro Tanaka who convinced us that there is no such obstruction

    The Power of Brane-Induced Gravity

    Get PDF
    We study the role of the brane-induced graviton kinetic term in theories with large extra dimensions. In five dimensions we construct a model with a TeV-scale fundamental Planck mass and a {\it flat} extra dimension the size of which can be astronomically large. 4D gravity on the brane is mediated by a massless zero-mode, whereas the couplings of the heavy Kaluza-Klein modes to ordinary matter are suppressed. The model can manifest itself through the predicted deviations from Einstein theory in long distance precision measurements of the planetary orbits. The bulk states can be a rather exotic form of dark matter, which at sub-solar distances interact via strong 5D gravitational force. We show that the induced term changes dramatically the phenomenology of sub-millimeter extra dimensions. For instance, high-energy constraints from star cooling or cosmology can be substantially relaxed.Comment: 24 pages, 4 eps figures; v2 typos corrected; v3 1 ref. added; PRD versio
    corecore