1,007 research outputs found

    Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder

    Full text link
    The failure probabilities or the strength distributions of heterogeneous 1D systems with continuous local strength distribution and local load sharing have been studied using a simple, exact, recursive method. The fracture behavior depends on the local bond-strength distribution, the system size, and the applied stress, and crossovers occur as system size or stress changes. In the brittle region, systems with continuous disorders have a failure probability of the modified-Gumbel form, similar to that for systems with percolation disorder. The modified-Gumbel form is of special significance in weak-stress situations. This new recursive method has also been generalized to calculate exactly the failure probabilities under various boundary conditions, thereby illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure

    The true reinforced random walk with bias

    Full text link
    We consider a self-attracting random walk in dimension d=1, in presence of a field of strength s, which biases the walker toward a target site. We focus on the dynamic case (true reinforced random walk), where memory effects are implemented at each time step, differently from the static case, where memory effects are accounted for globally. We analyze in details the asymptotic long-time behavior of the walker through the main statistical quantities (e.g. distinct sites visited, end-to-end distance) and we discuss a possible mapping between such dynamic self-attracting model and the trapping problem for a simple random walk, in analogy with the static model. Moreover, we find that, for any s>0, the random walk behavior switches to ballistic and that field effects always prevail on memory effects without any singularity, already in d=1; this is in contrast with the behavior observed in the static model.Comment: to appear on New J. Phy

    Mariner Mars 1971 optical navigation demonstration

    Get PDF
    The feasibility of using a combination of spacecraft-based optical data and earth-based Doppler data to perform near-real-time approach navigation was demonstrated by the Mariner Mars 71 Project. The important findings, conclusions, and recommendations are documented. A summary along with publications and papers giving additional details on the objectives of the demonstration are provided. Instrument calibration and performance as well as navigation and science results are reported

    Scaling of interfaces in brittle fracture and perfect plasticity

    Get PDF
    The roughness properties of two-dimensional fracture surfaces as created by the slow failure of random fuse networks are considered and compared to yield surfaces of perfect plasticity with similar disorder. By studying systems up to a linear size L=350 it is found that in the cases studied the fracture surfaces exhibit self-affine scaling with a roughness exponent close to 2/3, which is asymptotically exactly true for plasticity though finite-size effects are evident for both. The overlap of yield or minimum energy and fracture surfaces with exactly the same disorder configuration is shown to be a decreasing function of the system size and to be of a rather large magnitude for all cases studied. The typical ``overlap cluster'' length between pairs of such interfaces converges to a constant with LL increasing.Comment: Accepted for publication in Phys. Rev.

    Extremal statistics in the energetics of domain walls

    Get PDF
    We study at T=0 the minimum energy of a domain wall and its gap to the first excited state concentrating on two-dimensional random-bond Ising magnets. The average gap scales as ΔE1Lθf(Nz)\Delta E_1 \sim L^\theta f(N_z), where f(y)[lny]1/2f(y) \sim [\ln y]^{-1/2}, θ\theta is the energy fluctuation exponent, LL length scale, and NzN_z the number of energy valleys. The logarithmic scaling is due to extremal statistics, which is illustrated by mapping the problem into the Kardar-Parisi-Zhang roughening process. It follows that the susceptibility of domain walls has also a logarithmic dependence on system size.Comment: Accepted for publication in Phys. Rev.

    Structural Properties of Self-Attracting Walks

    Full text link
    Self-attracting walks (SATW) with attractive interaction u > 0 display a swelling-collapse transition at a critical u_{\mathrm{c}} for dimensions d >= 2, analogous to the \Theta transition of polymers. We are interested in the structure of the clusters generated by SATW below u_{\mathrm{c}} (swollen walk), above u_{\mathrm{c}} (collapsed walk), and at u_{\mathrm{c}}, which can be characterized by the fractal dimensions of the clusters d_{\mathrm{f}} and their interface d_{\mathrm{I}}. Using scaling arguments and Monte Carlo simulations, we find that for u<u_{\mathrm{c}}, the structures are in the universality class of clusters generated by simple random walks. For u>u_{\mathrm{c}}, the clusters are compact, i.e. d_{\mathrm{f}}=d and d_{\mathrm{I}}=d-1. At u_{\mathrm{c}}, the SATW is in a new universality class. The clusters are compact in both d=2 and d=3, but their interface is fractal: d_{\mathrm{I}}=1.50\pm0.01 and 2.73\pm0.03 in d=2 and d=3, respectively. In d=1, where the walk is collapsed for all u and no swelling-collapse transition exists, we derive analytical expressions for the average number of visited sites and the mean time to visit S sites.Comment: 15 pages, 8 postscript figures, submitted to Phys. Rev.

    An Efficient Block Circulant Preconditioner For Simulating Fracture Using Large Fuse Networks

    Full text link
    {\it Critical slowing down} associated with the iterative solvers close to the critical point often hinders large-scale numerical simulation of fracture using discrete lattice networks. This paper presents a block circlant preconditioner for iterative solvers for the simulation of progressive fracture in disordered, quasi-brittle materials using large discrete lattice networks. The average computational cost of the present alorithm per iteration is O(rslogs)+delopsO(rs log s) + delops, where the stiffness matrix A{\bf A} is partioned into rr-by-rr blocks such that each block is an ss-by-ss matrix, and delopsdelops represents the operational count associated with solving a block-diagonal matrix with rr-by-rr dense matrix blocks. This algorithm using the block circulant preconditioner is faster than the Fourier accelerated preconditioned conjugate gradient (PCG) algorithm, and alleviates the {\it critical slowing down} that is especially severe close to the critical point. Numerical results using random resistor networks substantiate the efficiency of the present algorithm.Comment: 16 pages including 2 figure

    Temporally disordered Ising models

    Full text link
    We present a study of the influence of different types of disorder on systems in the Ising universality class by employing both a dynamical field theory approach and extensive Monte Carlo simulations. We reproduce some well known results for the case of quenched disorder (random temperature and random field), and analyze the effect of four different types of time-dependent disorder scarcely studied so far in the literature. Some of them are of obvious experimental and theoretical relevance (as for example, globally fluctuating temperatures or random fields). All the predictions coming from our field theoretical analysis are fully confirmed by extensive simulations in two and three dimensions, and novel qualitatively different, non-Ising transitions are reported. Possible experimental setups designed to explore the described phenomenologies are also briefly discussed.Comment: Submitted to Phys. Rev. E. Rapid Comm. 4 page

    Stressed backbone and elasticity of random central-force systems

    Full text link
    We use a new algorithm to find the stress-carrying backbone of ``generic'' site-diluted triangular lattices of up to 10^6 sites. Generic lattices can be made by randomly displacing the sites of a regular lattice. The percolation threshold is Pc=0.6975 +/- 0.0003, the correlation length exponent \nu =1.16 +/- 0.03 and the fractal dimension of the backbone Db=1.78 +/- 0.02. The number of ``critical bonds'' (if you remove them rigidity is lost) on the backbone scales as L^{x}, with x=0.85 +/- 0.05. The Young's modulus is also calculated.Comment: 5 pages, 5 figures, uses epsfi
    corecore