285 research outputs found

    In situ

    Full text link

    The Ultimate Fate of Supercooled Liquids

    Full text link
    In recent years it has become widely accepted that a dynamical length scale {\xi}_{\alpha} plays an important role in supercooled liquids near the glass transition. We examine the implications of the interplay between the growing {\xi}_{\alpha} and the size of the crystal nucleus, {\xi}_M, which shrinks on cooling. We argue that at low temperatures where {\xi}_{\alpha} > {\xi}_M a new crystallization mechanism emerges enabling rapid development of a large scale web of sparsely connected crystallinity. Though we predict this web percolates the system at too low a temperature to be easily seen in the laboratory, there are noticeable residual effects near the glass transition that can account for several previously observed unexplained phenomena of deeply supercooled liquids including Fischer clusters, and anomalous crystal growth near T_g

    Combining scanning probe microscopy and x-ray spectroscopy

    Get PDF
    A new versatile tool, combining Shear Force Microscopy and X-Ray Spectroscopy was designed and constructed to obtain simultaneously surface topography and chemical mapping. Using a sharp optical fiber as microscope probe, it is possible to collect locally the visible luminescence of the sample. Results of tests on ZnO and on ZnWO4 thin layers are in perfect agreement with that obtained with other conventional techniques. Twin images obtained by simultaneous acquisition in near field of surface topography and of local visible light emitted by the sample under X-Ray irradiation in synchrotron environment are shown. Replacing the optical fibre by an X-ray capillary, it is possible to collect local X-ray fluorescence of the sample. Preliminary results on Co-Ti sample analysis are presented

    Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on Au(111)

    Full text link
    © 2014 American Chemical Society. The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstituted chiral alkanethiol), followed by in situ scanning tunneling microscopy (STM) imaging combined with density functional theory molecular dynamics STM image simulations. Even though butanethiol SAMs manifest strong headgroup interactions, steric interactions are shown to dominate SAM structure and chirality. Indeed, steric interactions are shown to dictate the nature of the headgroup itself, whether it takes on the adatom-bound motif RS‱Au(0)S‱R or involves direct binding of RS‱ to face-centered-cubic or hexagonal-close-packed sites. Binding as RS‱ produces large, organizationally chiral domains even when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS‱ also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs
    • 

    corecore