8 research outputs found

    Balanced impacts of fitness and drug pressure on the evolution of PfMDR1 polymorphisms in Plasmodium falciparum.

    Get PDF
    BACKGROUND: Anti-malarial drug resistance may be limited by decreased fitness in resistant parasites. Important contributors to resistance are mutations in the Plasmodium falciparum putative drug transporter PfMDR1. METHODS: Impacts on in vitro fitness of two common PfMDR1 polymorphisms, N86Y, which is associated with sensitivity to multiple drugs, and Y184F, which has no clear impact on drug sensitivity, were evaluated to study associations between resistance mediators and parasite fitness, measured as relative growth in competitive culture experiments. NF10 P. falciparum lines engineered to represent all PfMDR1 N86Y and Y184F haplotypes were co-cultured for 40 days, and the genetic make-up of the cultures was characterized every 4 days by pyrosequencing. The impacts of culture with anti-malarials on the growth of different haplotypes were also assessed. Lastly, the engineering of P. falciparum containing another common polymorphism, PfMDR1 D1246Y, was attempted. RESULTS: Co-culture results were as follows. With wild type (WT) Y184 fixed (N86/Y184 vs. 86Y/Y184), parasites WT and mutant at 86 were at equilibrium. With mutant 184 F fixed (N86/184F vs. 86Y/184F), mutants at 86 overgrew WT. With WT N86 fixed (N86/Y184 vs. N86/184F), WT at 184 overgrew mutants. With mutant 86Y fixed (86Y/Y184 vs. 86Y/184F), WT and mutant at 86 were at equilibrium. Parasites with the double WT were in equilibrium with the double mutant, but 86Y/Y184 overgrew N86/184F. Overall, WT N86/mutant 184F parasites were less fit than parasites with all other haplotypes. Parasites engineered for another mutation, PfMDR1 1246Y, were unstable in culture, with reversion to WT over time. Thus, the N86 WT is stable when accompanied by the Y184 WT, but incurs a fitness cost when accompanied by mutant 184F. Culturing in the presence of chloroquine favored 86Y mutant parasites and in the presence of lumefantrine favored N86 WT parasites; piperaquine had minimal impact. CONCLUSIONS: These results are consistent with those for Ugandan field isolates, suggest reasons for varied haplotypes, and highlight the interplay between drug pressure and fitness that is guiding the evolution of resistance-mediating haplotypes in P. falciparum

    Drug susceptibility of Plasmodium falciparum in eastern Uganda: a longitudinal phenotypic and genotypic study

    Get PDF
    Background: Treatment and control of malaria depends on artemisinin-based combination therapies (ACTs) and is challenged by drug resistance, but thus far resistance to artemisinins and partner drugs has primarily occurred in southeast Asia. The aim of this study was to characterise antimalarial drug susceptibility of Plasmodium falciparum isolates from Tororo and Busia districts in Uganda. Methods: In this prospective longitudinal study, P falciparum isolates were collected from patients aged 6 months or older presenting at the Tororo District Hospital (Tororo district, a site with relatively low malaria incidence) or Masafu General Hospital (Busia district, a high-incidence site) in eastern Uganda with clinical symptoms of malaria, a positive Giemsa-stained blood film for P falciparum, and no signs of severe disease. Ex-vivo susceptibilities to ten antimalarial drugs were measured using a 72-h microplate growth inhibition assay with SYBR Green detection. Relevant P falciparum genetic polymorphisms were characterised by molecular methods. We compared results with those from earlier studies in this region and searched for associations between drug susceptibility and parasite genotypes. Findings: From June 10, 2016, to July 29, 2019, 361 P falciparum isolates were collected in the Busia district and 79 in the Tororo district from 440 participants. Of 440 total isolates, 392 (89%) successfully grew in culture and showed excellent drug susceptibility for chloroquine (median half-maximal inhibitory concentration [IC50] 20·0 nM [IQR 12·0-26·0]), monodesethylamodiaquine (7·1 nM [4·3-8·9]), pyronaridine (1·1 nM [0·7-2·3]), piperaquine (5·6 nM [3·3-8·6]), ferroquine (1·8 nM [1·5-3·3]), AQ-13 (24·0 nM [17·0-32·0]), lumefantrine (5·1 nM [3·2-7·7]), mefloquine (9·5 nM [6·6-13·0]), dihydroartemisinin (1·5 nM [1·0-2·0]), and atovaquone (0·3 nM [0·2-0·4]). Compared with results from our study in 2010-13, significant improvements in susceptibility were seen for chloroquine (median IC50 288·0 nM [IQR 122·0-607·0]; p\u3c0·0001), monodesethylamodiaquine (76·0 nM [44·0-137]; p\u3c0·0001), and piperaquine (21·0 nM [7·6-43·0]; p\u3c0·0001), a small but significant decrease in susceptibility was seen for lumefantrine (3·0 nM [1·1-7·6]; p\u3c0·0001), and no change in susceptibility was seen with dihydroartemisinin (1·3 nM [0·8-2·5]; p=0·64). Chloroquine resistance (IC50\u3e100 nM) was more common in isolates from the Tororo district (11 [15%] of 71), compared with those from the Busia district (12 [4%] of 320; p=0·0017). We showed significant increases between 2010-12 and 2016-19 in the prevalences of wild-type P falciparum multidrug resistance protein 1 (PfMDR1) Asn86Tyr from 60% (391 of 653) to 99% (418 of 422; p\u3c0·0001), PfMDR1 Asp1246Tyr from 60% (390 of 650) to 90% (371 of 419; p\u3c0·0001), and P falciparum chloroquine resistance transporter (PfCRT) Lys76Thr from 7% (44 of 675) to 87% (364 of 417; p\u3c0·0001). Interpretation: Our results show marked changes in P falciparum drug susceptibility phenotypes and genotypes in Uganda during the past decade. These results suggest that additional changes will be seen over time and continued surveillance of susceptibility to key ACT components is warranted. Funding: National Institutes of Health and Medicines for Malaria Venture

    The Effects of Phytohormones and Isoprenoids in Dihydroartemisinin-induced Dormancy in the Erythrocytic Stages of \u3ci\u3ePlasmodium falciparum\u3c/i\u3e

    Get PDF
    Our ability to control malaria has been challenged by increasing antimalarial resistance. Plasmodium falciparum undergoes dormancy in the blood stages which is hypothesized to be a means by which they are able to survive under drug pressure. This helps select for resistant parasites which grow following removal of drug. The mechanisms behind dormancy and the subsequent recrudescence are not fully understood but translating knowledge from related organisms which undergo a similar phenomenon might shed some light. Higher plants utilize dormancy during the early development stages to survive under unfavorable conditions, increasing fitness of the seedling and ensuring viability when this is released and it develops into a mature plant. Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate this in response to environmental cues. We have found that both can be supplemented to dihydroartemesinin-induced dormant parasites to stimulate early recovery. Fluridone, an ABA inhibitor that releases dormancy in plants, was found to prolong it and cause a delay in recrudescence. These effects were observed in artemisinin sensitive and resistant strains. The apicoplast is required for recovery and supplementation of essential isoprenoid, isopentyl pyrophosphate (IPP), in apicoplast deficient parasites is sufficient enough to compensate for the lack of the organelle in antibiotic treated parasites. IPP plays an important role in development and metabolism of blood stage parasites as a key component of numerous secondary metabolites and protein activity by prenylation of isoprenoids. Its role in dormancy has not been explored prior to this study. Carotenoids are long-chained ABA precursors consisting of two molecules of geranylgeranyl pyrophosphate (GGPP). Several carotenoids as well as enzymes in that pathway have been identified in the blood stages of P. falciparum. The Apicomplexan parasite, Toxoplasma gondii synthesizes ABA, where it plays a role in signaling and development. To date ABA has not been detected in P. falciparum due to limitations in methods previously utilized. We have found that parasites with fosmidomycin inhibition of isoprenoids can be rescued with GGPP supplementation which we planned to use to further elucidate the carotenoid biosynthetic pathway. We hypothesized that Plasmodium has retained the ability to biosynthesize ABA and aimed to confirm this. We developed a novel method to label GGPP with 13C on three of its isoprene units. This would be used to metabolically label isoprenoid inhibited P. falciparum for incorporation through the carotenoid pathway for detection of 13C-ABA

    Changing Prevalence of Potential Mediators of Aminoquinoline, Antifolate, and Artemisinin Resistance Across Uganda.

    No full text
    BACKGROUND: In Uganda, artemether-lumefantrine is recommended for malaria treatment and sulfadoxine-pyrimethamine for chemoprevention during pregnancy, but drug resistance may limit efficacies. METHODS: Genetic polymorphisms associated with sensitivities to key drugs were characterized in samples collected from 16 sites across Uganda in 2018 and 2019 by ligase detection reaction fluorescent microsphere, molecular inversion probe, dideoxy sequencing, and quantitative polymerase chain reaction assays. RESULTS: Considering transporter polymorphisms associated with resistance to aminoquinolines, the prevalence of Plasmodium falciparum chloroquine resistance transporter (PfCRT) 76T decreased, but varied markedly between sites (0-46% in 2018; 0-23% in 2019); additional PfCRT polymorphisms and plasmepsin-2/3 amplifications associated elsewhere with resistance to piperaquine were not seen. For P. falciparum multidrug resistance protein 1, in 2019 the 86Y mutation was absent at all sites, the 1246Y mutation had prevalence ≤20% at 14 of 16 sites, and gene amplification was not seen. Considering mutations associated with high-level sulfadoxine-pyrimethamine resistance, prevalences of P. falciparum dihydrofolate reductase 164L (up to 80%) and dihydropteroate synthase 581G (up to 67%) were high at multiple sites. Considering P. falciparum kelch protein propeller domain mutations associated with artemisinin delayed clearance, prevalence of the 469Y and 675V mutations has increased at multiple sites in northern Uganda (up to 23% and 41%, respectively). CONCLUSIONS: We demonstrate concerning spread of mutations that may limit efficacies of key antimalarial drugs
    corecore