1,520 research outputs found

    Time-Distance Imaging of Solar Far-Side Active Regions

    Full text link
    It is of great importance to monitor large solar active regions in the far-side of the Sun for space weather forecast, in particular, to predict their appearance before they rotate into our view from the solar east limb. Local helioseismology techniques, including helioseismic holography and time-distance, have successfully imaged solar far-side active regions. In this Letter, we further explore the possibility of imaging and improving the image quality of solar far-side active regions by use of time-distance helioseismology. In addition to the previously used scheme with four acoustic signal skips, a five-skip scheme is also included in this newly developed technique. The combination of both four- and five-skip far-side images significantly enhances the signal-to-noise ratio in the far-side images, and reduces spurious signals. The accuracy of the far-side active region imaging is also assessed using one whole year solar observation.Comment: 13 pages, 5 figures, accepted by ApJ Letter

    Helioseismology of Sunspots: Confronting Observations with Three-Dimensional MHD Simulations of Wave Propagation

    Get PDF
    The propagation of solar waves through the sunspot of AR 9787 is observed using temporal cross-correlations of SOHO/MDI Dopplergrams. We then use three-dimensional MHD numerical simulations to compute the propagation of wave packets through self-similar magneto-hydrostatic sunspot models. The simulations are set up in such a way as to allow a comparison with observed cross-covariances (except in the immediate vicinity of the sunspot). We find that the simulation and the f-mode observations are in good agreement when the model sunspot has a peak field strength of 3 kG at the photosphere, less so for lower field strengths. Constraining the sunspot model with helioseismology is only possible because the direct effect of the magnetic field on the waves has been fully taken into account. Our work shows that the full-waveform modeling of sunspots is feasible.Comment: 21 pages, Accepted in Solar Physic

    Validated helioseismic inversions for 3-D vector flows

    Full text link
    According to time-distance helioseismology, information about internal fluid motions is encoded in the travel times of solar waves. The inverse problem consists of inferring 3-D vector flows from a set of travel-time measurements. Here we investigate the potential of time-distance helioseismology to infer 3-D convective velocities in the near-surface layers of the Sun. We developed a new Subtractive Optimally Localised Averaging (SOLA) code suitable for pipeline pseudo-automatic processing. Compared to its predecessor, the code was improved by accounting for additional constraints in order to get the right answer within a given noise level. The main aim of this study is to validate results obtained by our inversion code. We simulate travel-time maps using a snapshot from a numerical simulation of solar convective flows, realistic Born travel-time sensitivity kernels, and a realistic model of travel-time noise. These synthetic travel times are inverted for flows and the results compared with the known input flow field. Additional constraints are implemented in the inversion: cross-talk minimization between flow components and spatial localization of inversion coefficients. Using modes f, p1 through p4, we show that horizontal convective flow velocities can be inferred without bias, at a signal-to-noise ratio greater than one in the top 3.5 Mm, provided that observations span at least four days. The vertical component of velocity (v_z), if it were to be weak, is more difficult to infer and is seriously affected by cross-talk from horizontal velocity components. We emphasise that this cross-talk must be explicitly minimised in order to retrieve v_z in the top 1 Mm. We also show that statistical averaging over many different areas of the Sun allows for reliably measuring of average properties of all three flow components in the top 5.5 Mm of the convection zone.Comment: 14 pages main paper, 9 pages electronic supplement, 28 figures. Accepted for publication in Astronomy & Astrophysic

    Sub-Wavelength Resolution Imaging of the Solar Deep Interior

    Full text link
    We derive expectations for signatures in the measured travel times of waves that interact with thermal anomalies and jets. A series of numerical experiments that involve the dynamic linear evolution of an acoustic wave field in a solar-like stratified spherical shell in the presence of fully 3D time-stationary perturbations are performed. The imprints of these interactions are observed as shifts in wave travel times, which are extracted from these data through methods of time-distance helioseismology \citep{duvall}. In situations where at least one of the spatial dimensions of the scatterer was smaller than a wavelength, oscillatory time shift signals were recovered from the analyses, pointing directly to a means of resolving sub-wavelength features. As evidence for this claim, we present analyses of simulations with spatially localized jets and sound-speed perturbations. We analyze 1 years' worth solar observations to estimate the noise level associated with the time differences. Based on theoretical estimates, Fresnel zone time shifts associated with the (possible) sharp rotation gradient at the base of the convection zone are of the order 0.01 - 0.1 s, well below the noise level that could be reached with the currently available amount of data (∼0.15−0.2\sim 0.15-0.2 s with 10 yrs of data).Comment: Accepted, ApJ; 17 pages, 12 figure

    Seismic Constraints on Interior Solar Convection

    Get PDF
    We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R⊙=0.95r/R_\odot = 0.95 with spatial extent ℓ<20\ell <20, where ℓ\ell is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R⊙=0.95r/R_\odot = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.Comment: accepted, ApJ Letters, 5 figures, 10 pages (in this version

    Solar radius measurements

    Get PDF
    Preliminary results of measurements made during 1979-1980 are discussed. Variability in the radius measurements of 0.4 pi is found, of unknown origin

    Anomalously Weak Solar Convection

    Get PDF
    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ\ell. Within the wavenumber band ℓ<60\ell<60, Convective velocities are 20-100 times weaker than current theoretical estimates. This suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ<60\ell<60, with Rossby numbers smaller than ∼10−2\sim10^{-2} at r/R⊙=0.96r/R_\odot=0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that iso-rotation contours in the Sun are not co-aligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.Comment: PNAS; 5 figures, 5 page
    • …
    corecore