1,520 research outputs found
Time-Distance Imaging of Solar Far-Side Active Regions
It is of great importance to monitor large solar active regions in the
far-side of the Sun for space weather forecast, in particular, to predict their
appearance before they rotate into our view from the solar east limb. Local
helioseismology techniques, including helioseismic holography and
time-distance, have successfully imaged solar far-side active regions. In this
Letter, we further explore the possibility of imaging and improving the image
quality of solar far-side active regions by use of time-distance
helioseismology. In addition to the previously used scheme with four acoustic
signal skips, a five-skip scheme is also included in this newly developed
technique. The combination of both four- and five-skip far-side images
significantly enhances the signal-to-noise ratio in the far-side images, and
reduces spurious signals. The accuracy of the far-side active region imaging is
also assessed using one whole year solar observation.Comment: 13 pages, 5 figures, accepted by ApJ Letter
Helioseismology of Sunspots: Confronting Observations with Three-Dimensional MHD Simulations of Wave Propagation
The propagation of solar waves through the sunspot of AR 9787 is observed
using temporal cross-correlations of SOHO/MDI Dopplergrams. We then use
three-dimensional MHD numerical simulations to compute the propagation of wave
packets through self-similar magneto-hydrostatic sunspot models. The
simulations are set up in such a way as to allow a comparison with observed
cross-covariances (except in the immediate vicinity of the sunspot). We find
that the simulation and the f-mode observations are in good agreement when the
model sunspot has a peak field strength of 3 kG at the photosphere, less so for
lower field strengths. Constraining the sunspot model with helioseismology is
only possible because the direct effect of the magnetic field on the waves has
been fully taken into account. Our work shows that the full-waveform modeling
of sunspots is feasible.Comment: 21 pages, Accepted in Solar Physic
Validated helioseismic inversions for 3-D vector flows
According to time-distance helioseismology, information about internal fluid
motions is encoded in the travel times of solar waves. The inverse problem
consists of inferring 3-D vector flows from a set of travel-time measurements.
Here we investigate the potential of time-distance helioseismology to infer 3-D
convective velocities in the near-surface layers of the Sun. We developed a new
Subtractive Optimally Localised Averaging (SOLA) code suitable for pipeline
pseudo-automatic processing. Compared to its predecessor, the code was improved
by accounting for additional constraints in order to get the right answer
within a given noise level. The main aim of this study is to validate results
obtained by our inversion code. We simulate travel-time maps using a snapshot
from a numerical simulation of solar convective flows, realistic Born
travel-time sensitivity kernels, and a realistic model of travel-time noise.
These synthetic travel times are inverted for flows and the results compared
with the known input flow field. Additional constraints are implemented in the
inversion: cross-talk minimization between flow components and spatial
localization of inversion coefficients. Using modes f, p1 through p4, we show
that horizontal convective flow velocities can be inferred without bias, at a
signal-to-noise ratio greater than one in the top 3.5 Mm, provided that
observations span at least four days. The vertical component of velocity (v_z),
if it were to be weak, is more difficult to infer and is seriously affected by
cross-talk from horizontal velocity components. We emphasise that this
cross-talk must be explicitly minimised in order to retrieve v_z in the top 1
Mm. We also show that statistical averaging over many different areas of the
Sun allows for reliably measuring of average properties of all three flow
components in the top 5.5 Mm of the convection zone.Comment: 14 pages main paper, 9 pages electronic supplement, 28 figures.
Accepted for publication in Astronomy & Astrophysic
Sub-Wavelength Resolution Imaging of the Solar Deep Interior
We derive expectations for signatures in the measured travel times of waves
that interact with thermal anomalies and jets. A series of numerical
experiments that involve the dynamic linear evolution of an acoustic wave field
in a solar-like stratified spherical shell in the presence of fully 3D
time-stationary perturbations are performed. The imprints of these interactions
are observed as shifts in wave travel times, which are extracted from these
data through methods of time-distance helioseismology \citep{duvall}. In
situations where at least one of the spatial dimensions of the scatterer was
smaller than a wavelength, oscillatory time shift signals were recovered from
the analyses, pointing directly to a means of resolving sub-wavelength
features. As evidence for this claim, we present analyses of simulations with
spatially localized jets and sound-speed perturbations. We analyze 1 years'
worth solar observations to estimate the noise level associated with the time
differences. Based on theoretical estimates, Fresnel zone time shifts
associated with the (possible) sharp rotation gradient at the base of the
convection zone are of the order 0.01 - 0.1 s, well below the noise level that
could be reached with the currently available amount of data ( s
with 10 yrs of data).Comment: Accepted, ApJ; 17 pages, 12 figure
Seismic Constraints on Interior Solar Convection
We constrain the velocity spectral distribution of global-scale solar
convective cells at depth using techniques of local helioseismology. We
calibrate the sensitivity of helioseismic waves to large-scale convective cells
in the interior by analyzing simulations of waves propagating through a
velocity snapshot of global solar convection via methods of time-distance
helioseismology. Applying identical analysis techniques to observations of the
Sun, we are able to bound from above the magnitudes of solar convective cells
as a function of spatial convective scale. We find that convection at a depth
of with spatial extent , where is the
spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s
or less. Convective features deeper than are more difficult
to image due to the rapidly decreasing sensitivity of helioseismic waves.Comment: accepted, ApJ Letters, 5 figures, 10 pages (in this version
Solar radius measurements
Preliminary results of measurements made during 1979-1980 are discussed. Variability in the radius measurements of 0.4 pi is found, of unknown origin
Anomalously Weak Solar Convection
Convection in the solar interior is thought to comprise structures on a
spectrum of scales. This conclusion emerges from phenomenological studies and
numerical simulations, though neither covers the proper range of dynamical
parameters of solar convection. Here, we analyze observations of the wavefield
in the solar photosphere using techniques of time-distance helioseismology to
image flows in the solar interior. We downsample and synthesize 900 billion
wavefield observations to produce 3 billion cross-correlations, which we
average and fit, measuring 5 million wave travel times. Using these travel
times, we deduce the underlying flow systems and study their statistics to
bound convective velocity magnitudes in the solar interior, as a function of
depth and spherical-harmonic degree . Within the wavenumber band
, Convective velocities are 20-100 times weaker than current
theoretical estimates. This suggests the prevalence of a different paradigm of
turbulence from that predicted by existing models, prompting the question: what
mechanism transports the heat flux of a solar luminosity outwards? Advection is
dominated by Coriolis forces for wavenumbers , with Rossby numbers
smaller than at , suggesting that the Sun may be
a much faster rotator than previously thought, and that large-scale convection
may be quasi-geostrophic. The fact that iso-rotation contours in the Sun are
not co-aligned with the axis of rotation suggests the presence of a latitudinal
entropy gradient.Comment: PNAS; 5 figures, 5 page
- …