16 research outputs found

    Unique Resistance of I/LnJ Mice to a Retrovirus Is Due to Sustained Interferon γ–dependent Production of Virus-neutralizing Antibodies

    Get PDF
    Selection of immune escape variants impairs the ability of the immune system to sustain an efficient antiviral response and to control retroviral infections. Like other retroviruses, mouse mammary tumor virus (MMTV) is not efficiently eliminated by the immune system of susceptible mice. In contrast, MMTV-infected I/LnJ mice are capable of producing IgG2a virus-neutralizing antibodies, sustain this response throughout their life, and secrete antibody-coated virions into the milk, thereby preventing infection of their progeny. Antibodies were produced in response to several MMTV variants and were cross-reactive to them. Resistance to MMTV infection was recessive and was dependent on interferon (IFN)-γ production, because I/LnJ mice with targeted deletion of the INF-γ gene failed to produce any virus-neutralizing antibodies. These findings reveal a novel mechanism of resistance to retroviral infection that is based on a robust and sustained IFN-γ–dependent humoral immune response

    HIV-specific cellular immune responses in HIV-1 and HIV-2 infection

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A novel mechanism of resistance to retroviral infection.

    No full text

    Analysis of Human Immunodeficiency Virus Cytopathicity by Using a New Method for Quantitating Viral Dynamics in Cell Culture

    No full text
    Human immunodeficiency virus (HIV) causes complex metabolic changes in infected CD4(+) T cells that lead to cell cycle arrest and cell death by necrosis. To study the viral functions responsible for deleterious effects on the host cell, we quantitated the course of HIV type 1 infection in tissue cultures by using flow cytometry for a virally encoded marker protein, heat-stable antigen (HSA). We found that HSA appeared on the surface of the target cells in two phases: passive acquisition due to association and fusion of virions with target cells, followed by active protein expression from transcription of the integrated provirus. The latter event was necessary for decreased target cell viability. We developed a general mathematical model of viral dynamics in vitro in terms of three effective time-dependent rates: those of cell proliferation, infection, and death. Using this model we show that the predominant contribution to the depletion of viable target cells results from direct cell death rather than cell cycle blockade. This allows us to derive accurate bounds on the time-dependent death rates of infected cells. We infer that the death rate of HIV-infected cells is 80 times greater than that of uninfected cells and that the elimination of the vpr protein reduces the death rate by half. Our approach provides a general method for estimating time-dependent death rates that can be applied to study the dynamics of other viruses

    Polyfunctional T cell responses are a hallmark of HIV-2 infection

    No full text
    HIV-2 is distinguished clinically and immunologically from HIV-1 infection by delayed disease progression and maintenance of HIV-specific CD4(+) T cell help in most infected subjects. Thus, HIV-2 provides a unique natural human model in which to investigate correlates of immune protection against HIV disease progression. Here, we report a detailed assessment of the HIV-2-specific CD4(+) and CD8(+) T cell response compared to HIV-1, using polychromatic flow cytometry to assess the quality of the HIV-specific T cell response by measuring IFN-gamma, IL-2, TNF-alpha, MIP-1beta, and CD107a mobilization (degranulation) simultaneously following Gag peptide stimulation. We find that HIV-2-specific CD4(+) and CD8(+) T cells are more polyfunctional that those specific for HIV-1 and that polyfunctional HIV-2-specific T cells produce more IFN-gamma and TNF-alpha on a per-cell basis than monofunctional T cells. Polyfunctional HIV-2-specific CD4(+) T cells were generally more differentiated and expressed CD57, while there was no association between function and phenotype in the CD8(+) T cell fraction. Polyfunctional HIV-specific T cell responses are a hallmark of non-progressive HIV-2 infection and may be related to good clinical outcome in this setting

    Inflammation resolution circuits are uncoupled in acute sepsis and correlate with clinical severity

    No full text
    Sepsis is a critical illness characterized by dysregulated inflammatory responses lacking counter-regulation. Specialized proresolving mediators are agonists for antiinflammation and for promoting resolution, and they are protective in preclinical sepsis models. Here, in human sepsis, we mapped resolution circuits for the specialized proresolving mediators resolvin D1 and resolvin D2 in peripheral blood neutrophils and monocytes, their regulation of leukocyte activation and function ex vivo, and their relationships to measures of clinical severity. Neutrophils and monocytes were isolated from healthy subjects and patients with sepsis by inertial microfluidics and resolvin D1 and resolvin D2 receptor expression determined by flow cytometry. The impact of these resolvins on leukocyte activation was determined by isodielectric separation and leukocyte function by stimulated phagolysosome formation. Leukocyte proresolving receptor expression was significantly higher in sepsis. In nanomolar concentrations, resolvin D1 and resolvin D2 partially reversed sepsis-induced changes in leukocyte activation and function. Principal component analyses of leukocyte resolvin receptor expression and responses differentiated sepsis from health and were associated with measures of sepsis severity. These findings indicate that resolvin D1 and resolvin D2 signaling for antiinflammation and resolution are uncoupled from leukocyte activation in early sepsis and suggest that indicators of diminished resolution signaling correlate with clinical disease severity
    corecore