146 research outputs found

    Finding Crush: Environmental DNA Analysis as a Tool for Tracking the Green Sea Turtle Chelonia mydas in a Marine Estuary

    Get PDF
    Environmental DNA (eDNA) analysis is a rapid, non-invasive method for species detection and distribution assessment using DNA released into the surrounding environment by an organism. eDNA analysis is recognised as a powerful tool for detecting endangered or rare species in a range of ecosystems. Although the number of studies using eDNA analysis in marine systems is continually increasing, there appears to be no published studies investigating the use of eDNA analysis to detect sea turtles in natural conditions. We tested the efficacy of two primer pairs known to amplify DNA fragments of differing lengths (488 and 253 bp) from Chelonia mydas tissues for detecting C. mydas eDNA in water samples. The capture, extraction, and amplification of C. mydas eDNA from aquaria (Sea World, San Diego, CA, United States) and natural water (San Diego Bay, CA, United States) were successful using either primer set. The primer pair providing the shorter amplicon, LCMint2/H950g, demonstrated the ability to distinguish cross-reactive species by melt curve analysis and provided superior amplification metrics compared to the other primer set (LTCM2/HDCM2); although primer dimer was observed, warranting future design refinement. Results indicated that water samples taken from deeper depths might improve detection frequency, consistent with C. mydas behaviour. Overall, this pilot study suggests that with refinement of sampling methodology and further assay optimisation, eDNA analysis represents a promising tool to monitor C. mydas. Potential applications include rapid assessment across broad geographical areas to pinpoint promising locations for further evaluation with traditional methods

    Multiple Distant Origins for Green Sea Turtles Aggregating off Gorgona Island in the Colombian Eastern Pacific

    Get PDF
    Mitochondrial DNA analyses have been useful for resolving maternal lineages and migratory behavior to foraging grounds (FG) in sea turtles. However, little is known about source rookeries and haplotype composition of foraging green turtle aggregations in the southeastern Pacific. We used mitochondrial DNA control region sequences to identify the haplotype composition of 55 green turtles, Chelonia mydas, captured in foraging grounds of Gorgona National Park in the Colombian Pacific. Amplified fragments of the control region (457 bp) revealed the presence of seven haplotypes, with haplotype (h) and nucleotide (π) diversities of h = 0.300±0.080 and π = 0.009±0.005 respectively. The most common haplotype was CMP4 observed in 83% of individuals, followed by CMP22 (5%). The genetic composition of the Gorgona foraging population primarily comprised haplotypes that have been found at eastern Pacific rookeries including Mexico and the Galapagos, as well as haplotypes of unknown stock origin that likely originated from more distant western Pacific rookeries. Mixed stock analysis suggests that the Gorgona FG population is comprised mostly of animals from the Galapagos rookery (80%). Lagrangian drifter data showed that movement of turtles along the eastern Pacific coast and eastward from distant western and central Pacific sites was possible through passive drift. Our results highlight the importance of this protected area for conservation management of green turtles recruited from distant sites along the eastern Pacific Ocean

    A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma

    Get PDF
    The phosphatidylinositol 3-kinase signal transduction pathway members are often activated in tumor samples from patients with non-Hodgkin's lymphoma (NHL). Everolimus is an oral agent that targets the raptor mammalian target of rapamycin (mTORC1). The goal of this trial was to learn the antitumor activity and toxicity of single-agent everolimus in patients with relapsed/refractory aggressive NHL. Patients received everolimus 10 mg PO daily. Response was assessed after two and six cycles, and then every three cycles until progression. A total of 77 patients with a median age of 70 years were enrolled. Patients had received a median of three previous therapies and 32% had undergone previous transplant. The overall response rate (ORR) was 30% (95% confidence interval: 20–41%), with 20 patients achieving a partial remission and 3 a complete remission unconfirmed. The ORR in diffuse large B cell was 30% (14/47), 32% (6/19) in mantle cell and 38% (3/8) in follicular grade 3. The median duration of response was 5.7 months. Grade 3 or 4 anemia, neutropenia and thrombocytopenia occurred in 14, 18 and 38% of patients, respectively. Everolimus has single-agent activity in relapsed/refractory aggressive NHL and provides proof-of-concept that targeting the mTOR pathway is clinically relevant

    Dispersive, superfluid-like shock waves in nonlinear optics

    Full text link
    In most classical fluids, shock waves are strongly dissipative, their energy being quickly lost through viscous damping. But in systems such as cold plasmas, superfluids, and Bose-Einstein condensates, where viscosity is negligible or non-existent, a fundamentally different type of shock wave can emerge whose behaviour is dominated by dispersion rather than dissipation. Dispersive shock waves are difficult to study experimentally, and analytical solutions to the equations that govern them have only been found in one dimension (1D). By exploiting a well-known, but little appreciated, correspondence between the behaviour of superfluids and nonlinear optical materials, we demonstrate an all-optical experimental platform for studying the dynamics of dispersive shock waves. This enables us to observe the propagation and nonlinear response of dispersive shock waves, including the interaction of colliding shock waves, in 1D and 2D. Our system offers a versatile and more accessible means for exploring superfluid-like and related dispersive phenomena.Comment: 21 pages, 6 figures Revised abstrac

    Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales

    Get PDF
    Background: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques - including site-based monitoring, genetic analyses, mark-recapture studies and telemetry - can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine-to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework - including maps and supporting metadata - will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed

    Mind the gap: The role of mindfulness in adapting to increasing risk and climate change

    Get PDF
    corecore