20,101 research outputs found
Coupling nanomechanical cantilevers to dipolar molecules
We investigate the coupling of a nanomechanical oscillator in the quantum
regime with molecular (electric) dipoles. We find theoretically that the
cantilever can produce single-mode squeezing of the center-of-mass motion of an
isolated trapped molecule and two-mode squeezing of the phonons of an array of
molecules. This work opens up the possibility of manipulating dipolar crystals,
which have been recently proposed as quantum memory, and more generally, is
indicative of the promise of nanoscale cantilevers for the quantum detection
and control of atomic and molecular systems.Comment: 3 figures, 4page
The Large Magellanic Cloud: A power spectral analysis of Spitzer images
We present a power spectral analysis of Spitzer images of the Large
Magellanic Cloud. The power spectra of the FIR emission show two different
power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones
(tens to few hundreds of parsecs) the slope is steeper, with a value ~ -2.9.
The break occurs at a scale around 100-200 pc. We interpret this break as the
scale height of the dust disk of the LMC. We perform high resolution
simulations with and without stellar feedback. Our AMR hydrodynamic simulations
of model galaxies using the LMC mass and rotation curve, confirm that they have
similar two-component power-laws for projected density and that the break does
indeed occur at the disk thickness. Power spectral analysis of velocities
betrays a single power law for in-plane components. The vertical component of
the velocity shows a flat behavior for large structures and a power law similar
to the in-plane velocities at small scales. The motions are highly anisotropic
at large scales, with in-plane velocities being much more important than
vertical ones. In contrast, at small scales, the motions become more isotropic.Comment: 8 pages, 4 figures, talk presented at "Galaxies and their Masks",
celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To
be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I.
Puerar
Universal Scaling Property of System Approaching Equilibrium
In this Letter we show that the diffusion kinetics of kinetic energy among
the atoms in non- equilibrium crystalline systems follows universal scaling
relation and obey Levy-walk properties. This scaling relation is found to be
valid for systems no matter how far they are driven out of equilibrium.Comment: 6 pages, 4 figure
Signature of strong atom-cavity interaction on critical coupling
We study a critically coupled cavity doped with resonant atoms with
metamaterial slabs as mirrors. We show how resonant atom-cavity interaction can
lead to a splitting of the critical coupling dip. The results are explained in
terms of the frequency and lifetime splitting of the coupled system.Comment: 8 pages, 5 figure
Aspects of Horava-Lifshitz cosmology
We review some general aspects of Horava-Lifshitz cosmology. Formulating it
in its basic version, we extract the cosmological equations and we use
observational data in order to constrain the parameters of the theory. Through
a phase-space analysis we extract the late-time stable solutions, and we show
that eternal expansion, and bouncing and cyclic behavior can arise naturally.
Concerning the effective dark energy sector we show that it can describe the
phantom phase without the use of a phantom field. However, performing a
detailed perturbation analysis, we see that Horava-Lifshitz gravity in its
basic version suffers from instabilities. Therefore, suitable generalizations
are required in order for this novel theory to be a candidate for the
description of nature.Comment: 10 pages, 4 figures, invited talk given at the 2nd International
Workshop on Dark Matter, Dark Energy and Matter-Antimatter Assymetry,
National Tsing Hua University, Hsinchu, Taiwan, November 5-6, 201
Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C kappa carbides
Carbides play a central role for the strength and ductility in many
materials. Simulating the impact of these precipitates on the mechanical
performance requires the knowledge about their atomic configuration. In
particular, the C content is often observed to substantially deviate from the
ideal stoichiometric composition. In the present work, we focus on Fe-Mn-Al-C
steels, for which we determined the composition of the nano-sized kappa
carbides (Fe,Mn)3AlC by atom probe tomography (APT) in comparison to larger
precipitates located in grain boundaries. Combining density functional theory
with thermodynamic concepts, we first determine the critical temperatures for
the presence of chemical and magentic disorder in these carbides. Secondly, the
experimentally observed reduction of the C content is explained as a compromise
between the gain in chemical energy during partitioning and the elastic strains
emerging in coherent microstructures
- …