13 research outputs found

    Ticks Elicit Variable Fibrinogenolytic Activities Upon Feeding on Hosts With Different Immune Backgrounds

    Get PDF
    Ticks secrete several anti-hemostatic factors in their saliva to suppress the host innate and acquired immune defenses against infestations. Using Ixodes scapularis ticks and age-matched mice purchased from two independent commercial vendors with two different immune backgrounds as a model, we show that ticks fed on immunodeficient animals demonstrate decreased fibrinogenolytic activity in comparison to ticks fed on immunocompetent animals. Reduced levels of D-dimer (fibrin degradation product) were evident in ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Increased engorgement weights were noted for ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Furthermore, the LC-MS/MS and quantitative real-time-PCR analysis followed by inhibitor and antibody-blocking assays revealed that the arthropod HSP70-like molecule contributes to differential fibrinogenolysis during tick feeding. Collectively, these results not only indicate that ticks elicit variable fibrinogenolysis upon feeding on hosts with different immune backgrounds but also provide insights for the novel role of arthropod HSP70-like molecule in fibrinogenolysis during blood feeding

    Matrix-free infrared soft laser desorption/ionization

    No full text
    Infrared soft laser desorption/ionization was performed using a 2.94 μm Er: YAG laser and a commercial reflectron time-of-flight mass spectrometer. The instrument was modified so that a 337 nm nitrogen laser could be used concurrently with the IR laser to interrogate samples. Matrix-assisted laser desorption/ionization (MALDI), laser desorption/ionization and desorption/ionization on silicon with UV and IR lasers were compared. Various target materials were tested for IR soft desorption ionization, including stainless steel, aluminum, copper, silicon, porous silicon and polyethylene. Silicon surfaces gave the best performance in terms of signal level and low-mass interference. The internal energy resultant of the desorption/ionization was assessed using the easily fragmented vitamin B12 molecule. IR ionization produced more analyte fragmentation than UV-MALDI analysis. Fragmentation from matrix-free IR desorption from silicon was comparable to that from IR-MALDI. The results are interpreted as soft laser desorption and ionization resulting from the absorption of the IR laser energy by the analyte and associated solvent molecules. Copyright © 2004 John Wiley & Sons, Ltd

    Overcoming Challenges and Opening New Opportunities in Glycoproteomics

    No full text
    Glycoproteomics has emerged as a prime area of interest within the field of proteomics because glycoproteins have been shown to function as biomarkers for disease and as promising therapeutic targets. A significant challenge in the study of glycoproteins is the fact that they are expressed in relatively low abundance in cells. In response, various enrichment methods have been developed to improve the detection of glycoproteins. One such method involves their capture via oxidation of their glycan chains and covalent attachment with hydrazide resins which, when catalyzed by PNGase F, release N-linked glycans and convert the glycosite Asn to Asp; this conversion is identifiable with LC/ESI-MS/MS as a corresponding increase of 0.984 Da in molecular weight. The present study builds on this body of work, providing evidence of three additional strategies that improve glycoprotein identification: (1) use of a high resolution mass spectrometer—the Q Exactive MS—which delivers 2–3 times more glycoprotein identifications than a low resolution MS; (2) optimization of instrument settings and database search parameters to reduce misidentification of N-linked glycopeptides to ~1 percent; and (3) labeling glycopeptides with 18O during PNGase F treatment to locate N-linked glycosites within peptides containing multiple N-linked sequons

    Affinity labeling the dopamine transporter ligand binding site

    No full text
    Photoaffinity labeling is a positive function approach that has been used in an effort to identify the cocaine-binding site on the dopamine transporter (DAT). Radioactive and non-radioactive analogs of cocaine and other dopamine uptake blockers are used to irreversibly label the DAT ligand-binding site and the protein is subjected to chemical or enzymatic treatments that cleave at specific amino acid residues. Analysis of cleavage products from radioactively photolabeled DAT using epitope-specific immunoprecipitation, gel electrophoresis, and autoradiography has identified the site of origin in the primary sequence of labeled fragments as small as 4 kDa. More precise localization of the site of labeling is done by subjecting photolabeled DAT to parallel or serial digestion with multiple cleavage methods, followed by analysis of radiolabeled peptides by reverse-phase HPLC. Fragment retention times are compared to calculated retention times of predicted digest peptides and to chemically or photochemically labeled synthetic peptides. The presence of authentic DAT sequence in HPLC fractions of digests from DAT labeled with non-radioactive ligands is further supported by MALDI and nanoelectrospray mass spectrometry. Using these methods we have identified two distinct regions of DAT that interact with multiple structurally related and diverse irreversible ligands, suggesting that these regions may be involved in the formation of ligand binding sites. © 2004 Elsevier B.V. All rights reserved

    Histone Deacetylase Inhibitors Potentiate Vesicular Stomatitis Virus Oncolysis In Prostate Cancer Cells By Modulating NF-KB-Dependent Autophagy

    No full text
    Vesicular stomatitis virus (VSV) is an oncolytic virus that induces cancer cell death through activation of the apoptotic pathway. Intrinsic resistance to oncolysis is found in some cell lines and many primary tumors as a consequence of residual innate immunity to VSV. In resistant-tumor models, VSV oncolytic potential can be reversibly stimulated by combination with epigenetic modulators, such as the histone deacetylase inhibitor vorinostat. Based on this reversible effect of vorinostat, we reasoned that critical host genes involved in oncolysis may likewise be reversibly regulated by vorinostat. A transcriptome analysis in prostate cancer PC3 cells identified a subset of NF-κB target genes reversibly regulated by vorinostat, as well as a group of interferon (IFN)-stimulated genes (ISGs). Consistent with the induction of NF-κB target genes, vorinostat-mediated enhancement of VSV oncolysis increased hyperacetylation of NF-κB RELA/p65. Additional bioinformatics analysis revealed that NF-κB signaling also increased the expression of several autophagy-related genes. Kinetically, autophagy preceded apoptosis, and apoptosis was observed only when cells were treated with both VSV and vorinostat. VSV replication and cell killing were suppressed when NF-κB signaling was inhibited using pharmacological or genetic approaches. Inhibition of autophagy by 3-methyladenine (3-MA) enhanced expression of ISGs, and either 3-MA treatment or genetic ablation of the autophagic marker Atg5 decreased VSV replication and oncolysis. Together, these data demonstrate that vorinostat stimulates NF-κB activity in a reversible manner via modulation of RELA/p65 signaling, leading to induction of autophagy, suppression of the IFN-mediated response, and subsequent enhancement of VSV replication and apoptosis
    corecore