28 research outputs found

    Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval

    Get PDF
    In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future researchComment: Oral paper in CVPR 201

    Learning Cross-Modal Deep Embeddings for Multi-Object Image Retrieval using Text and Sketch

    Get PDF
    In this work we introduce a cross modal image retrieval system that allows both text and sketch as input modalities for the query. A cross-modal deep network architecture is formulated to jointly model the sketch and text input modalities as well as the the image output modality, learning a common embedding between text and images and between sketches and images. In addition, an attention model is used to selectively focus the attention on the different objects of the image, allowing for retrieval with multiple objects in the query. Experiments show that the proposed method performs the best in both single and multiple object image retrieval in standard datasets.Comment: Accepted at ICPR 201

    Pyridinium based amphiphilic hydrogelators as potential antibacterial agents

    Get PDF
    The numerous applications of hydrogelators have led to rapid expansion of this field. In the present work we report the facile synthesis of amphiphilic hydrogelators having a quaternary pyridinium unit coupled to a hydrophobic long alkyl chain through an amide bond. Different amphiphiles with various hydrophobic chain length and polar head groups were rationally designed and synthesized to develop a structure-property relation. A judicious combination of hydrophilic and hydrophobic segments led to the development of pyridinium based amphiphilic hydrogelators having a minimum gelation concentration of 1.7%, w/v. Field emission scanning electronic microscopy (FESEM), atomic force microscopy (AFM), photoluminescence, FTIR studies, X-ray diffraction (XRD) and 2D NOESY experiments were carried out to elucidate the different non-covalent interactions responsible for the self-assembled gelation. The formation of three-dimensional supramolecular aggregates originates from the interdigitated bilayer packing of the amphiphile leading to the development of an efficient hydrogel. Interestingly, the presence of the pyridinium scaffold along with the long alkyl chain render these amphiphiles inherently antibacterial. The amphiphilic hydrogelators exhibited high antibacterial activity against both Gram-positive and Gram-negative bacteria with minimum inhibitory concentration (MIC) values as low as 0.4 μg/mL. Cytotoxicity tests using MTT assay showed 50% NIH3T3 cell viability with hydrogelating amphiphile 2 up to 100 μg/mL

    Design of a Strong-Arm Dynamic-Latch based comparator with high speed, low power and low offset for SAR-ADC

    No full text
    Comparators are utilised by Nyquist-rate and oversampling analog to digital converters (ADCs) to accomplish quantization and perhaps sampling. Thus, comparators have a  substantial effect on the speed and accuracy of ADCs. This study provides a revised design for a dynamic-latch-based comparator that achieves the lowest latency, maximum area-efficient realisation, reduced power dissipation, and low offset. The proposed circuit has been designed and simulated using GDPK  45 nm standard CMOS-Process to operate on 100 MHz clock, at  1.2V supply voltage. Design and simulation have been carried  out using CADENCE Virtuoso EDA tool. Compared to the  original design, the PDP was easily reduced by approximately  by 6% with offset voltage reduced by 8 mV without speed trade off. </p

    pH-Triggered conversion of soft nanocomposites: in situ synthesized AuNP-hydrogel to AuNP-organogel

    No full text
    Amino acid based amphiphilic gelators (carboxylate salts) were employed for the in situ synthesis of gold nanoparticles (GNPs) in hydrogel networks at room temperature without using any external reducing or capping agents for the development of AuNP-hydrogel soft composite. Synthesized AuNP-hydrogel composites were then successfully converted to AuNP-organogel composites simply by lowering the pH of the aqueous medium, as the hydrogelating amphiphilic carboxylates were transformed to corresponding carboxylic acids that are efficient organogelators. These water insoluble carboxylic acids spontaneously moved from the aqueous phase to the nonpolar organic media (toluene) along with the synthesized GNPs to form the AuNP-organogel composite. The phase transfer of the GNPs from a hydrogel network to an organogel network was investigated by UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies. Supramolecular networks of both the gels played a crucial role in stabilization of the GNPs. Fluorescence spectroscopy was used to investigate the mechanistic detail of the in situ GNP synthesis. The characterizations indicated the formation of spherical and uniform sized GNPs and even phase transfer of the nanoparticles did not result in change of shape or size of the nanoparticles. Rational designing of the gelator/nongelator molecules helped us to recognize the key structural components required for the efficient synthesis and stabilization of the GNPs in both the phases. Rheological study suggested that the hydrogel-GNP composites possess improved viscoelastic property than the native hydrogel

    Unmodified "GNP-oligonucleotide" nanobiohybrids: a simple route for emission enhancement of DNA intercalators

    No full text
    We present herein a simple method for enhancing the emission of DNA intercalators in homogeneous nanobiohybrids of unlabeled oligonucleotides and unmodified gold nanoparticles (GNPs). Pristine single-stranded DNA (ss-DNA) has been wrapped around unmodified GNPs to induce metal-enhanced fluorescence (MEF) of DNA intercalators, such as ethidium bromide and propidium iodide. The thickness of the ss-DNA layer on the gold nanosurface determines the extent of MEF, since this depends on the position of the intercalator in relation to the metal surface. Presumably, at a suitable thickness of this DNA layer, more of the intercalator is localized at the optimum distance from the nanoparticle to give rise to MEF. Importantly, no external spacer or coating agent was needed to induce the MEF effect of the GNPs. The concentration ratios of Au to DNA in the nanohybrids, as well as the capping agents applied to the GNPs, play key roles in enhancing the emission of the intercalators. The dimensions of both components of the nanobiohybrids, that is, the size of the GNPs and the length of the oligonucleotide, have considerable influences on the emission enhancement of the intercalators. Emission intensity increased with increasing size of the GNPs and length of the oligonucleotide only when the DNA efficiently wrapped the nanoparticles. An almost 100 % increment in the quantum yield of ethidium bromide was achieved with the GNP–DNA nanobiohybrid compared with that with DNA alone (in the absence of GNP), and the fluorescence emission was enhanced by 50 % even at an oligonucleotide concentration of 2 nM. The plasmonic effect of the GNPs in the emission enhancement was also established by the use of similar nanobioconjugates of ss-DNA with nonmetallic carbon nanoparticles and TiO2 nanoparticles, with which no increase in the fluorescence emission of ethidium bromide was observed

    Striking improvement in peroxidase activity of cytochrome c by modulating hydrophobicity of surface-functionalized gold nanoparticles within cationic reverse micelles

    No full text
    This work demonstrates a remarkable enhancement in the peroxidase activity of mitochondrial membrane protein cytochrome c (cyt c) by perturbing its tertiary structure in the presence of surface-functionalised gold nanoparticles (GNPs) within cetyltrimethylammonium bromide (CTAB) reverse micelles. The loss in the tertiary structure of cyt c exposes its heme moiety (which is buried inside in the native globular form), which provides greater substrate (pyrogallol and H2O2) accessibility to the reactive heme residue. The surfactant shell of the CTAB reverse micelle in the presence of co-surfactant (n-hexanol) exerted higher crowding effects on the interfacially bound cyt c than similar anionic systems. The congested interface led to protein unfolding, which resulted in a 56-fold higher peroxidase activity of cyt c than that in water. Further perturbation in the protein’s structure was achieved by doping amphiphile-capped GNPs with varying hydrophobicities in the water pool of the reverse micelles. The hydrophobic moiety on the surface of the GNPs was directed towards the interfacial region, which induced major steric strain at the interface. Consequently, interaction of the protein with the hydrophobic domain of the amphiphile further disrupted its tertiary structure, which led to better opening up of the heme residue and, thereby, superior activity of the cyt c. The cyt c activity in the reverse micelles proportionately enhanced with an increase in the hydrophobicity of the GNP-capping amphiphiles. A rigid cholesterol moiety as the hydrophobic end group of the GNP strikingly improved the cyt c activity by up to 200-fold relative to that found in aqueous buffer. Fluorescence studies with both a tryptophan residue (Trp59) of the native protein and the sodium salt of fluorescein delineated the crucial role of the hydrophobicity of the GNP-capping amphiphiles in improving the peroxidase activity of cyt c by unfolding its tertiary structure within the reverse micelles

    In situ synthesized Ag nanoparticle in self-assemblies of amino acid based amphiphilic hydrogelators: development of antibacterial soft nanocomposites

    No full text
    The present work reports the development of a new class of antibacterial soft-nanocomposites by in situ synthesis of silver nanoparticle (AgNP) within the supramolecular self-assemblies of amino acid (tryptophan/tyrosine) based amphiphilic hydrogelators. Interestingly, the nanoparticle synthesis does not require the use of any external reducing/stabilizing agents. The nanocomposites were characterized by UV-vis spectra, transmission electron microscopy (TEM) images, X-ray diffraction spectroscopy (XRD) and thermo gravimetric analysis (TGA). Encouragingly, these soft nanocomposites showed excellent antibacterial activity against both Gram-positive and Gram-negative bacteria whereas the amphiphiles alone were lethal only toward Gram-positive bacteria. Judicious combination of bactericidal AgNP within the self-assemblies of inherently antibacterial amphiphilic gelators led to the development of soft nanocomposites effective against both type of bacteria. The head group charge and structure of the amphiphiles were altered to investigate their important role on the synthesis and stabilization of AgNP and also in modulating the antibacterial activity of the nanocomposites. The antibacterial activities of soft nanocomposites comprising amphiphiles with cationic head group were found to be more efficient than the anionic soft nanocomposites. Interestingly, these nanocomposites have shown considerable biocompatibility to mammalian cell, NIH3T3. Furthermore, the well-known tissue engineering scaffold, agar-gelatin film infused with these soft nanocomposites allowed normal growth of mammalian cells on its surface while being lethal toward both Gram-positive and Gram-negative bacteria

    Counterion dependent hydrogelation of amino acid based amphiphiles: switching from non-gelators to gelators and facile synthesis of silver nanoparticles

    No full text
    With the growing importance of hydrogels in scientific applications, the search for low molecular weight hydrogelators (LMWH), with simultaneous logical structural correlation is continuously increasing. In the present work, counterion variation of amino acid based amphiphiles was done to qualitatively evaluate its contribution towards hydrogelation. Further changes in the molecular skeleton of the amino acid amphiphile were done along with counterion variation to establish the importance of π–π interactions of aromatic planar ring in hydrogelation. An efficient conversion of a non-gelator to gelator molecule was achieved simply by changing the counterions to aromatic carboxylates. Role of the counterion in the mechanism of gelation process through the self-assembly of amino acid based amphiphiles has been discussed. The formation of supramolecular structures during hydrogelation was investigated by FESEM, CD, FT-IR, luminescence, 2D-NOESY and rheological studies. Interestingly, the L-tryptophan containing amphiphile hydrogelators were further utilized for synthesis of Ag nanoparticles under mild conditions without any need for high temperature, alkaline medium and external reducing agent. The nanoparticles obtained were characterized by UV-Vis, TEM, AFM and XRD experiments
    corecore