2,581 research outputs found

    Exponential Reduction in Sample Complexity with Learning of Ising Model Dynamics

    Full text link
    The usual setting for learning the structure and parameters of a graphical model assumes the availability of independent samples produced from the corresponding multivariate probability distribution. However, for many models the mixing time of the respective Markov chain can be very large and i.i.d. samples may not be obtained. We study the problem of reconstructing binary graphical models from correlated samples produced by a dynamical process, which is natural in many applications. We analyze the sample complexity of two estimators that are based on the interaction screening objective and the conditional likelihood loss. We observe that for samples coming from a dynamical process far from equilibrium, the sample complexity reduces exponentially compared to a dynamical process that mixes quickly.Comment: Accepted to ICML 202

    Time reflection and refraction in synthetic frequency dimension

    Full text link
    The duality of space and time in Maxwell's equations has prompted interest in time boundaries and the accompanying temporal analog of spatial reflection and refraction. However, achieving observable time boundary effects at optical frequencies in real materials is challenging. In this work, we demonstrate that time reflection and refraction can be observed in a two-band model centered around a non-zero reference energy. Our model can be physically implemented in the synthetic frequency dimension as a system of two coupled dynamically-modulated ring resonators. We find that modulation at microwave frequencies is sufficient to observe time boundary effects for optical waves in synthetic frequency dimension. Our work shows that implementing multi-band models in synthetic dimensions opens a new avenue for further exploration of time boundaries.Comment: 9 pages, 4 figures; fixed typo in equation labe

    Unforgeable Noise-Tolerant Quantum Tokens

    Get PDF
    The realization of devices which harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of "quantum money". A dishonest holder of a quantum bank-note will invariably fail in any forging attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence and operational imperfections abound. Thus, the development of secure "quantum money"-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store and measure single qubit quantum memories, making their experimental realization accessible with current technologies.Comment: 18 pages, 5 figure

    Rho-omega mixing in asymmetric nuclear matter via QCD sum rule approach

    Full text link
    We evaluate the operator product expansion (OPE) for a mixed correlator of the isovector and isoscalar vector currents in the background of the nucleon density with intrinsic isospin asymmetry [i.e. excess of neutrons over protons] and match it with its imaginary part, given by resonances and continuum, via the dispersion relation. The leading density-dependent contribution to ρω\rho-\omega mixing is due the scattering term, which turns out to be larger than any density dependent piece in the OPE. We estimate that the asymmetric density of nnnp2.5×102 fm3n_n-n_p \sim 2.5 \times 10^{-2} ~{\rm fm^3} induces the amplitude of ρω\rho-\omega mixing, equal in magnitude to the mixing amplitude in vacuum, with the constructive interference for positive and destructive for negative values of nnnpn_n-n_p. We revisit sum rules for vector meson masses at finite nucleon density to point out the numerical importance of the screening term in the isoscalar channel, which turns out to be one order of magnitude larger than any density-dependent condensates over the Borel window. This changes the conclusions about the density dependence of mωm_\omega, indicating 40\sim 40 MeV increase at nuclear saturation density.Comment: 8 pages, Revte

    Mass independence and asymmetry of the reaction: Multi-fragmentation as an example

    Full text link
    We present our recent results on the fragmentation by varying the mass asymmetry of the reaction between 0.2 and 0.7 at an incident energy of 250 MeV/nucleon. For the present study, the total mass of the system is kept constant (ATOT = 152) and mass asymmetry of the reaction is defined by the asymmetry parameter (? = | (AT - AP)/(AT + AP) |). The measured distributions are shown as a function of the total charge of all projectile fragments, Zbound. We see an interesting outcome for rise and fall in the production of intermediate mass fragments (IMFs) for large asymmetric colliding nuclei. This trend, however, is completely missing for large asymmetric nuclei. Therefore, experiments are needed to verify this prediction

    Graded extension of SO(2,1) Lie algebra and the search for exact solutions of Dirac equation by point canonical transformations

    Full text link
    SO(2,1) is the symmetry algebra for a class of three-parameter problems that includes the oscillator, Coulomb and Morse potentials as well as other problems at zero energy. All of the potentials in this class can be mapped into the oscillator potential by point canonical transformations. We call this class the "oscillator class". A nontrivial graded extension of SO(2,1) is defined and its realization by two-dimensional matrices of differential operators acting in spinor space is given. It turns out that this graded algebra is the supersymmetry algebra for a class of relativistic potentials that includes the Dirac-Oscillator, Dirac-Coulomb and Dirac-Morse potentials. This class is, in fact, the relativistic extension of the oscillator class. A new point canonical transformation, which is compatible with the relativistic problem, is formulated. It maps all of these relativistic potentials into the Dirac-Oscillator potential.Comment: Replaced with a more potrable PDF versio

    High Accuracy Protein Identification: Fusion of solid-state nanopore sensing and machine learning

    Full text link
    Proteins are arguably the most important class of biomarkers for health diagnostic purposes. Label-free solid-state nanopore sensing is a versatile technique for sensing and analysing biomolecules such as proteins at single-molecule level. While molecular-level information on size, shape, and charge of proteins can be assessed by nanopores, the identification of proteins with comparable sizes remains a challenge. Here, we present methods that combine solid-state nanopore sensing with machine learning to address this challenge. We assess the translocations of four similarly sized proteins using amplifiers with bandwidths (BWs) of 100 kHz (sampling rate=200 ksps) and 10 MHz (sampling rate=40 Msps), the highest bandwidth reported for protein sensing, using nanopores fabricated in <10 nm thick silicon nitride membranes. F-values of up to 65.9% and 83.2% (without clustering of the protein signals) were achieved with 100 kHz and 10 MHz BW instruments, respectively, for identification of the four proteins. The accuracy of protein identification was significantly improved by grouping the signals into several clusters depending on the event features, resulting in F-value and specificity reaching as high as 88.7% and 96.4%, respectively, for combinations of four proteins. The combined improvement in sensor signals through the use of high bandwidth instruments, advanced clustering, machine learning, and other advanced data analysis methods allows identification of proteins with high accuracy

    Scattering of relativistic particles with Aharonov-Bohm-Coulomb interaction in two dimensions

    Get PDF
    The Aharonov-Bohm-Coulomb potentials in two dimensions may describe the interaction between two particles carrying electric charge and magnetic flux, say, Chern--Simons solitons, or so called anyons. The scattering problem for such two-body systems is extended to the relativistic case, and the scattering amplitude is obtained as a partial wave series. The electric charge and magnetic flux is (q-q, ϕ/Z-\phi/Z) for one particle and (ZqZq, ϕ\phi) for the other. When (Zq2/c)21(Zq^2/\hbar c)^2\ll 1, and qϕ/2πcq\phi/2\pi\hbar c takes on integer or half integer values, the partial wave series is summed up approximately to give a closed form. The results exhibit some nonperturbative features and cannot be obtained from perturbative quantum electrodynamics at the tree level.Comment: revtex, 11 pages, no figur

    Ma-Xu quantization rule and exact WKB condition for translationally shape invariant potentials

    Full text link
    For translationally shape invariant potentials, the exact quantization rule proposed by Ma and Xu is a direct consequence of exactness of the modified WKB quantization condition proved by Barclay. We propose here a very direct alternative way to calculate the appropriate correction for the whole class of translationally shape invariant potentials
    corecore