8 research outputs found

    The influence of the rapamycin-derivate SDZ RAD on the healing of airway anastomoses

    Get PDF
    Objective: Among the many immunosuppressive effects of SDZ RAD (40-0(2-hydroxyethyl)-rapamycin), a rapamycin derivative, is the inhibition of fibroblast proliferation. Since the long-term success of lung transplantation is limited by the development of bronchiolitis obliterans, a fibroblast-associated progressive luminal obstruction of the terminal bronchioli, the use of SDZ RAD as immunosuppressive in pulmonary graft recipients may counteract this process. However, reduction of fibroblast activity, posttransplant, may impair the healing of the bronchial anastomoses. Materials and methods: The cervical trachea in pigs was denuded, divided and re-anastomosed with Prolene 4-0 single stitches. Control animals (group 1, n=4) were without, and study animals (group 2, n=6) were with SDZ RAD therapy (1.25 mg/kg/day, p.o., 14 days). After 14 days, the pigs were sacrificed. The anastomoses were examined histologically, and breaking strength of tracheal strips of 5-mm width was measured. Results: All animals survived without complications. Serum levels of SDZ RAD were 30.9±8.7 ng/ml (recommended level 20-40 ng/ml). All anastomoses healed macroscopically without difference between the two groups. Breaking strength was significantly lower in the treated animals (group 1 vs. group 2: 11.75±0.35 vs. 7.69±1.39 N, P=0.01). Histology did not show a significant change in histoarchitecture between the groups. Conclusions: Although SDZ RAD significantly reduced the breaking strength of the tracheal anastomosis, no obvious histological differences between treated and untreated animals could be detected. Since this model does not reflect the clinical situation, further investigations are necessary to reveal the effect of SDZ RAD on airway wound healing in concert with a contemporary clinically used multidrug immunosuppressive regimen in allograft recipient

    Reduction of airspace after lung resection through controlled paralysis of the diaphragm

    Get PDF
    Objectives: Residual airspace following thoracic resections is a common clinical problem. Persistent air leak, prolonged drainage time, and reduced hemostasis extend hospital stay and morbidity. We report a trial of pharmacologic-induced diaphragmatic paralysis through continuous paraphrenic injection of lidocaine to reduced residual airspace. The objectives were confirmation of diaphragmatic paralysis and possible procedure related complications. Methods: Six eligible patients undergoing resectional surgery (lobectomy or bilobectomy) were included. Inclusion criteria consisted of: postoperative predicted FEV1 greater than 1300ml, right-sided resection, absence of parenchymal lung disease, no class III antiarrhythmic therapy, absence of hypersensitivity reactions to lidocaine, no signs of infection, and informed consent. Upon completion of resection an epidural catheter was attached in the periphrenic tissue on the proximal pericardial surface, externalized through a separate parasternal incision, and connected to a perfusing system injecting lidocaine 1% at a rate of 3ml/h (30mg/h). Postoperative ICU surveillance for 24h and daily measurement of vital signs, drainage output, and bedside spirometry were performed. Within 48h fluoroscopic confirmation of diaphragmatic paralysis was obtained. The catheter removal coincided with the chest tube removal when no procedural related complications occurred. Results: None of the patients reported respiratory impairment. Diaphragmatic paralysis was documented in all patients. Upon removal of catheter or discontinuation of lidocaine prompt return of diaphragmatic motility was noticed. Two patients showed postoperative hemodynamic irrelevant atrial fibrillation. Conclusion: Postoperative paraphrenic catheter administration of lidocaine to ensure reversible diaphragmatic paralysis is safe and reproducible. Further studies have to assess a benefit in terms of reduction in morbidity, drainage time, and hospital stay, and determine the patients who will profi

    Chest drains: purse string suture 4.0

    No full text

    Identification of mesenchymal stromal cells in human lung parenchyma capable of differentiating into aquaporin 5-expressing cells

    No full text
    The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration

    Reduction of airspace after lung resection through controlled paralysis of the diaphragm

    Get PDF
    OBJECTIVES: Residual airspace following thoracic resections is a common clinical problem. Persistent air leak, prolonged drainage time, and reduced hemostasis extend hospital stay and morbidity. We report a trial of pharmacologic-induced diaphragmatic paralysis through continuous paraphrenic injection of lidocaine to reduced residual airspace. The objectives were confirmation of diaphragmatic paralysis and possible procedure related complications. METHODS: Six eligible patients undergoing resectional surgery (lobectomy or bilobectomy) were included. Inclusion criteria consisted of: postoperative predicted FEV1 greater than 1300 ml, right-sided resection, absence of parenchymal lung disease, no class III antiarrhythmic therapy, absence of hypersensitivity reactions to lidocaine, no signs of infection, and informed consent. Upon completion of resection an epidural catheter was attached in the periphrenic tissue on the proximal pericardial surface, externalized through a separate parasternal incision, and connected to a perfusing system injecting lidocaine 1% at a rate of 3 ml/h (30 mg/h). Postoperative ICU surveillance for 24h and daily measurement of vital signs, drainage output, and bedside spirometry were performed. Within 48 h fluoroscopic confirmation of diaphragmatic paralysis was obtained. The catheter removal coincided with the chest tube removal when no procedural related complications occurred. RESULTS: None of the patients reported respiratory impairment. Diaphragmatic paralysis was documented in all patients. Upon removal of catheter or discontinuation of lidocaine prompt return of diaphragmatic motility was noticed. Two patients showed postoperative hemodynamic irrelevant atrial fibrillation. CONCLUSION: Postoperative paraphrenic catheter administration of lidocaine to ensure reversible diaphragmatic paralysis is safe and reproducible. Further studies have to assess a benefit in terms of reduction in morbidity, drainage time, and hospital stay, and determine the patients who will profit
    corecore