23 research outputs found
Reduction of airspace after lung resection through controlled paralysis of the diaphragm
Objectives: Residual airspace following thoracic resections is a common clinical problem. Persistent air leak, prolonged drainage time, and reduced hemostasis extend hospital stay and morbidity. We report a trial of pharmacologic-induced diaphragmatic paralysis through continuous paraphrenic injection of lidocaine to reduced residual airspace. The objectives were confirmation of diaphragmatic paralysis and possible procedure related complications. Methods: Six eligible patients undergoing resectional surgery (lobectomy or bilobectomy) were included. Inclusion criteria consisted of: postoperative predicted FEV1 greater than 1300ml, right-sided resection, absence of parenchymal lung disease, no class III antiarrhythmic therapy, absence of hypersensitivity reactions to lidocaine, no signs of infection, and informed consent. Upon completion of resection an epidural catheter was attached in the periphrenic tissue on the proximal pericardial surface, externalized through a separate parasternal incision, and connected to a perfusing system injecting lidocaine 1% at a rate of 3ml/h (30mg/h). Postoperative ICU surveillance for 24h and daily measurement of vital signs, drainage output, and bedside spirometry were performed. Within 48h fluoroscopic confirmation of diaphragmatic paralysis was obtained. The catheter removal coincided with the chest tube removal when no procedural related complications occurred. Results: None of the patients reported respiratory impairment. Diaphragmatic paralysis was documented in all patients. Upon removal of catheter or discontinuation of lidocaine prompt return of diaphragmatic motility was noticed. Two patients showed postoperative hemodynamic irrelevant atrial fibrillation. Conclusion: Postoperative paraphrenic catheter administration of lidocaine to ensure reversible diaphragmatic paralysis is safe and reproducible. Further studies have to assess a benefit in terms of reduction in morbidity, drainage time, and hospital stay, and determine the patients who will profi
Tropheryma whipplei tricuspid endocarditis: a case report and review of the literature
INTRODUCTION: The main clinical manifestations of Whipple's disease are weight loss, arthropathy, diarrhea and abdominal pain. Cardiac involvement is frequently described. However, endocarditis is rare and is not usually the initial presentation of the disease. To the best of our knowledge, this is the first reported case of a patient with Tropheryma whipplei tricuspid endocarditis without any other valve involved and not presenting signs of arthralgia and abdominal involvement.
CASE PRESENTATION: We report a case of a 50-year-old Caucasian man with tricuspid endocarditis caused by Tropheryma whipplei, showing signs of severe shock and an absence of other more classic clinical signs of Whipple's disease, such as arthralgia, abdominal pain and diarrhea. Tropheryma whipplei was documented by polymerase chain reaction of the blood and pleural fluid. The infection was treated with a combined treatment of doxycycline, hydroxychloroquine and sulfamethoxazole-trimethoprim for one year.
CONCLUSION: Tropheryma whipplei infectious endocarditis should always be considered when facing a blood-culture negative endocarditis particularly in right-sided valves. Although not standardized yet, treatment of Tropheryma whipplei endocarditis should probably include a bactericidal antibiotic (such as doxycycline) and should be given over a prolonged period of time (a minimum of one year)
Fluorescent Microangiography Is a Novel and Widely Applicable Technique for Delineating the Renal Microvasculature
Rarefaction of the renal microvasculature correlates with declining kidney function. However, current technologies commonly used for its evaluation are limited by their reliance on endothelial cell antigen expression and assessment in two dimensions. We set out to establish a widely applicable and unbiased optical sectioning method to enable three dimensional imaging and reconstruction of the renal microvessels based on their luminal filling. The kidneys of subtotally nephrectomized (SNx) rats and their sham-operated counterparts were subjected to either routine two-dimensional immunohistochemistry or the novel technique of fluorescent microangiography (FMA). The latter was achieved by perfusion of the kidney with an agarose suspension of fluorescent polystyrene microspheres followed by optical sectioning of 200 µm thick cross-sections using a confocal microscope. The fluorescent microangiography method enabled the three-dimensional reconstruction of virtual microvascular casts and confirmed a reduction in both glomerular and peritubular capillary density in the kidneys of SNx rats, despite an overall increase in glomerular volume. FMA is an uncomplicated technique for evaluating the renal microvasculature that circumvents many of the limitations imposed by conventional analysis of two-dimensional tissue sections
Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus.
In unstimulated interphase bovine epithelial (MDBK) cells, both regulatory (R II) and catalytic (C) subunits of the type II enzyme of cAMP-dependent protein kinase (cAMP-dPK II) are associated with the Golgi complex. However, as demonstrated by indirect immunofluorescence microscopy, within 5 min after stimulation of adenylate cyclase by forskolin, the C subunit dissociates from the Golgi-associated R II and becomes diffusely distributed. With increasing time of forskolin treatment, C subunits accumulate in the nucleus, while R II subunits remain associated with the Golgi complex. The effect of forskolin is rapidly reversible in that C subunits begin to reassociate with the Golgi complex within a few minutes after drug removal. C subunit translocations similar to those produced by forskolin also occur after treatment of MDBK cells with dibutyryl-cAMP, confirming that the observed effects are most likely mediated by elevation of intracellular cAMP levels. These results suggest that nuclear translocation of activated protein kinase subunits may represent an important link between hormonal stimuli and physiological responses
The influence of the rapamycin-derivate SDZ RAD on the healing of airway anastomoses
Objective: Among the many immunosuppressive effects of SDZ RAD (40-0(2-hydroxyethyl)-rapamycin), a rapamycin derivative, is the inhibition of fibroblast proliferation. Since the long-term success of lung transplantation is limited by the development of bronchiolitis obliterans, a fibroblast-associated progressive luminal obstruction of the terminal bronchioli, the use of SDZ RAD as immunosuppressive in pulmonary graft recipients may counteract this process. However, reduction of fibroblast activity, posttransplant, may impair the healing of the bronchial anastomoses. Materials and methods: The cervical trachea in pigs was denuded, divided and re-anastomosed with Prolene 4-0 single stitches. Control animals (group 1, n=4) were without, and study animals (group 2, n=6) were with SDZ RAD therapy (1.25 mg/kg/day, p.o., 14 days). After 14 days, the pigs were sacrificed. The anastomoses were examined histologically, and breaking strength of tracheal strips of 5-mm width was measured. Results: All animals survived without complications. Serum levels of SDZ RAD were 30.9±8.7 ng/ml (recommended level 20-40 ng/ml). All anastomoses healed macroscopically without difference between the two groups. Breaking strength was significantly lower in the treated animals (group 1 vs. group 2: 11.75±0.35 vs. 7.69±1.39 N, P=0.01). Histology did not show a significant change in histoarchitecture between the groups. Conclusions: Although SDZ RAD significantly reduced the breaking strength of the tracheal anastomosis, no obvious histological differences between treated and untreated animals could be detected. Since this model does not reflect the clinical situation, further investigations are necessary to reveal the effect of SDZ RAD on airway wound healing in concert with a contemporary clinically used multidrug immunosuppressive regimen in allograft recipient
Identification of mesenchymal stromal cells in human lung parenchyma capable of differentiating into aquaporin 5-expressing cells
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration
Normal gas exchange after 30-h ischemia and treatment with phosphodiesterase inhibitor PDI747
OBJECTIVE: Phosphodiesterases (PDEs) negatively regulate the concentrations of cAMP and/or cGMP, which act as downstream second messengers to the prostaglandins. PDE type-4 (PDE4) is selective for cAMP and is found in high concentrations in endothelial, epithelial, and different blood cells. The aim of this study was to evaluate if PDI747, a novel selective inhibitor of PDE4, can restore pretransplant cAMP levels and thereby posttransplant organ function after prolonged cold ischemia. METHODS: Left lung transplantation was performed in pigs (25-31 kg). Donor lungs were flushed with low potassium dextran glucose (LPDG) solution only (control, n=5)or, in addition with 1 micromol of PDI747 (PDI747, n=5) and stored for 30 h at 1 degrees C. PDI747 animals further received a bolus of PDI747 (0.3 mg/kg) 15 min prior to reperfusion and a continuous infusion (0.3 mg/kg per hour) during the 5 h after reperfusion. After occlusion of the right pulmonary arteries and the right main bronchus, hemodynamic and gas exchange parameters and extravascular lung water (EVLW) levels of the transplanted lung were assessed. RESULTS: Two control animals died of severe lung edema leading to heart failure (control, n=3). One animal in the treatment group was excluded due to a patent ductus arteriosus (PDI747, n=4). Gas exchange at the end of the experiment was restored to normal levels in the PDI747 group (Pa, O(2) 47.6+/-11.2 kPa, Pa,CO(2) 6.4+/-1.8 kPa) but not in the control group (Pa, O(2) 7.7+/-2.9 kPa, Pa, CO(2) 11.9+/-3.0 kPa, P(PaO2)<0.0001, P(Pa, CO2)=0.06). Extravascular lung water (EVLW) was normal in the PDI747 group (8.5+/-1.1 ml/kg) and clearly elevated in the control group (16.2+/-5.6 ml/kg, P=0.007). Airway pressure in the PDI747 group was significantly lower than in the control group (7.8+/-0.5 cm H(2)O vs. 11.3+/-0.6 cm H(2)O, respectively, P<0.0001). The free radical mediated tissue injury measured by lipid peroxidation (TBARS) was significantly reduced (P=0.001) in the PDI747 group. CONCLUSIONS: With the inhibition of PDE4 with PDI747 we achieved normal gas exchange, no posttransplant lung edema, normal airway pressures, and a reduced free radical injury after 30 h of cold ischemia