322 research outputs found

    Formation of capillary bridges in AFM-like geometry

    Full text link
    We discuss the phase diagram of fluid confined in AFM-like geometry. It combines the properties of capillary condensation and complete filling of a wedge.Comment: 9 pages, 7 figure

    The influence of line tension on the formation of liquid bridges

    Full text link
    The formation of liquid bridges between a planar and conical substrates is analyzed macroscopically taking into account the line tension. Depending on the value of the line tension coefficient \tau and geometric parameters of the system one observes two different scenarios of liquid bridge formation upon changing the fluid state along the bulk liquid-vapor coexistence. For \tau > \tau * (\tau * < 0) there is a first-order transition to a state with infinitely thick liquid bridge. For \tau < \tau * the scenario consists of two steps: first there is a first-order transition to a state with liquid bridge of finite thickness which upon further increase of temperature is followed by continuous growth of the thickness of the bridge to infinity. In addition to constructing the relevant phase diagram we examine the dependence of the width of the bridge on thermodynamic and geometric parameters of the system.Comment: 4 pages, 5 figure

    Mesoscopic analysis of Gibbs' criterion for sessile nanodroplets on trapezoidal substrates

    Full text link
    By taking into account precursor films accompanying nanodroplets on trapezoidal substrates we show that on a mesoscopic level of description one does not observe the phenomenon of liquid-gas-substrate contact line pinning at substrate edges. This phenomenon is present in a macroscopic description and leads to non-unique contact angles which can take values within a range determined by the so-called Gibbs' criterion. Upon increasing the volume of the nanodroplet the apparent contact angle evaluated within the mesoscopic approach changes continuously between two limiting values fulfilling Gibbs' criterion while the contact line moves smoothly across the edge of the trapezoidal substrate. The spatial extent of the range of positions of the contact line, corresponding to the variations of the contact angle between the values given by Gibbs' criterion, is of the order of ten fluid particle diameters.Comment: 23 pages, 27 figure

    A redshifted Fe Kα\alpha line from the unusual gamma-ray source PMN J1603-4904

    Full text link
    Multiwavelength observations have revealed the highly unusual properties of the gamma-ray source PMN J1603-4904, which are difficult to reconcile with any other well established gamma-ray source class. The object is either a very atypical blazar or compact jet source seen at a larger angle to the line of sight. In order to determine the physical origin of the high-energy emission processes in PMN J1603-4904, we study the X-ray spectrum in detail. We performed quasi-simultaneous X-ray observations with XMM-Newton and Suzaku in 2013 September, resulting in the first high signal-to-noise X-ray spectrum of this source. The 2-10 keV X-ray spectrum can be well described by an absorbed power law with an emission line at 5.44±\pm0.05 keV (observed frame). Interpreting this feature as a K{\alpha} line from neutral iron, we determine the redshift of PMN J1603-4904 to be z=0.18±\pm0.01, corresponding to a luminosity distance of 872±\pm54 Mpc. The detection of a redshifted X-ray emission line further challenges the original BL Lac classification of PMN J1603-4904. This result suggests that the source is observed at a larger angle to the line of sight than expected for blazars, and thus the source would add to the elusive class of gamma-ray loud misaligned-jet objects, possibly a {\gamma}-ray bright young radio galaxy.Comment: 5 pages, 1 figure, A&A accepte

    Unusual Flaring Activity in the Blazar PKS 1424-418 during 2008-2011

    Full text link
    Context. Blazars are a subset of active galactic nuclei (AGN) with jets that are oriented along our line of sight. Variability and spectral energy distribution (SED) studies are crucial tools for understanding the physical processes responsible for observed AGN emission. Aims. We report peculiar behaviour in the bright gamma-ray blazar PKS 1424-418 and use its strong variability to reveal information about the particle acceleration and interactions in the jet. Methods. Correlation analysis of the extensive optical coverage by the ATOM telescope and nearly continuous gamma-ray coverage by the Fermi Large Area Telescope is combined with broadband, time-dependent modeling of the SED incorporating supplemental information from radio and X-ray observations of this blazar. Results. We analyse in detail four bright phases at optical-GeV energies. These flares of PKS 1424-418 show high correlation between these energy ranges, with the exception of one large optical flare that coincides with relatively low gamma-ray activity. Although the optical/gamma-ray behaviour of PKS 1424-418 shows variety, the multiwavelength modeling indicates that these differences can largely be explained by changes in the flux and energy spectrum of the electrons in the jet that are radiating. We find that for all flares the SED is adequately represented by a leptonic model that includes inverse Compton emission from external radiation fields with similar parameters. Conclusions. Detailed studies of individual blazars like PKS 1424-418 during periods of enhanced activity in different wavebands are helping us identify underlying patterns in the physical parameters in this class of AGN.Comment: accepted for publication in A&

    ATCA monitoring of gamma-ray loud AGN

    Full text link
    As a critical part of the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TANAMI) program, in November 2007 the Australia Telescope Compact Array (ATCA) started monitoring the radio spectra of a sample of southern hemisphere active galactic nuclei (AGN) that were selected as likely candidates for detection (as well as a control sample) by the Large Area Telescope (LAT) aboard the Fermi Gamma Ray Space Observatory. The initial sample was chosen based on properties determined from AGN detections by the Energetic Gamma Ray Experiment Telescope (EGRET). Most of the initial sample has been detected by Fermi/LAT and with the addition of new detections the sample has grown to include 226 AGN, 133 of which have data for more than one epoch. For the majority of these AGN, our monitoring program provides the only dynamic radio spectra available. The ATCA receiver suite makes it possible to observe several sources at frequencies between 4.5 and 41 GHz in a few hours, resulting in an excellent measure of spectral index at each epoch. By examining how the spectral index changes over time, we aim to investigate the mechanics of radio and gamma-ray emission from AGN jets.Comment: 5 pages, 1 figure, 2012 Fermi & Jansky Proceedings - eConf C111110

    The TANAMI Program

    Get PDF
    TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry) is a monitoring program to study the parsec-scale structures and dynamics of relativistic jets in active galactic nuclei (AGN) of the Southern Hemisphere with the Long Baseline Array and associated telescopes. Extragalactic jets south of -30 degrees declination are observed at 8.4 GHz and 22 GHz every two months at milliarcsecond resolution. The initial TANAMI sample is a hybrid radio and gamma-ray selected sample since the combination of VLBI and gamma-ray observations is crucial to understand the broadband emission characteristics of AGN.Comment: Confernce Proceedings for "X-ray Astronomy 2009" (Bologna), 3 pages, 3 figures, needs cls-fil

    TANAMI - Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry

    Full text link
    We present a summary of the observation strategy of TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry), a monitoring program to study the parsec-scale structure and dynamics of relativistic jets in active galactic nuclei (AGN) of the Southern Hemisphere with the Australian Long Baseline Array (LBA) and the trans-oceanic antennas Hartebeesthoek, TIGO, and O'Higgins. TANAMI is focusing on extragalactic sources south of -30 degrees declination with observations at 8.4 GHz and 22 GHz every ~2 months at milliarcsecond resolution. The initial TANAMI sample of 43 sources has been defined before the launch of the Fermi Gamma Ray Space Telescope to include the most promising candidates for bright gamma-ray emission to be detected with its Large Area Telescope (LAT). Since November 2008, we have been adding new sources to the sample, which now includes all known radio- and gamma-ray bright AGN of the Southern Hemisphere. The combination of VLBI and gamma-ray observations is crucial to understand the broadband emission characteristics of AGN and the nature of relativistic jets.Comment: Conference proceedings "2009 Fermi Symposium" eConf Proceedings C09112
    corecore