5 research outputs found

    Control System of the SPIRAL2 Superconducting Linac Cryogenic System

    No full text
    International audienceThe SPIRAL2 cryogenic system has been designed to cool down and maintain stable operation conditions of the 26 LINAC superconducting resonating cavities at a temperature of 4.5 K or lower. The control system of the cryogenic system of the LINAC is based on an architecture of 20 PLCs. Through an independent network, it drives the instrumentation, the cryogenic equipment, the 26 brushless motors of the frequency tuning system, interfaces the Epics Control System, and communicates process information to the Low Level Radio Frequency, vacuum, and magnet systems. Its functions are to ensure the safety of the cryogenic system, to efficiently control the cooldown of the 19 cryomodules, to enslave the frequency tuning system for the RF operation, and to monitor and analyze the data from the process. A model based Linear Quadratic regulation controls simultaneously both phase separators the liquid helium level and pressure. This control system also makes it possible to perform a number of virtual verification tests via a simulator and a dedicated PLC used to develop advanced model based control, such as a real time heat load estimator based on a Luenberger Filte

    SPIRAL2 Machine Protection System Status Report

    No full text
    International audienceThe phase 1 of the SPIRAL2 facility, the extension project of the GANIL laboratory in Caen, France, is to be commissioned. The accelerator, composed of a normal conducting RFQ and a superconducting linac, is designed to accelerate high power deuteron and heavy ion beams up to 200 kW. A Machine Protection System (MPS) has been implemented to protect the accelerator from thermal damages for this very large range of beam intensities. This paper presents the solutions chosen for this system, composed of three subsystems: one dedicated to thermal protection which requires a PLC and a fast electronic system, a second one dedicated to enlarged safety protection, and a third safety subsystem dedicated to fast vacuum valve protection. Both of those subsystems work associated with a global EPICS-based control and HMI system, which gives the operation team global supervision of the accelerator and allows controlling sensor trigger thresholds, interlock system, beam initialization and power increase through the beam time structure. The MPS has been developed and is currently tested to be ready for the incoming SPIRAL2 commissioning

    Programmable Logic Controller Systems for SPIRAL2

    No full text
    International audiencePLC provides a large part of the SPIRAL 2 project’s commands. The SPIRAL2 project is based on a multi-beam driver in order to allow both ISOL and low-energy in-flight techniques to produce Radioactive Ion Beams (RIB). A superconducting light/heavy-ion linac with an acceleration potential of about 40 MV capable of accelerating 5 mA deuterons up to 40 MeV and 1 mA heavy ions up to 14.5 MeV/u is used to bombard both thick and thin targets. The PLCs provide vacuum control, access control, part of the machine protection system, control of the cryogenic distribution system, cooling controls, control of RF amplifiers, they are associated with the safety control system. The standards used are presented as well as the general synoptic of the PLC control system. The details of the major systems are presented, the Cryo distribution, the machine protection system, a safety system

    First full cool down of the SPIRAL 2 superconducting LINAC

    No full text
    International audience• First full cool down of the SPIRAL 2 superconducting linear accelerator. • Cool down requirements methods and procedures as well as actual data. • Preparing the operation mode through experimental run. • New multidisciplinary challenges between cryogenic and RF for superconducting accelerator
    corecore