5 research outputs found

    Atomic permutationally invariant polynomials for fitting molecular force fields

    Get PDF
    Abstract: We introduce and explore an approach for constructing force fields for small molecules, which combines intuitive low body order empirical force field terms with the concepts of data driven statistical fits of recent machine learned potentials. We bring these two key ideas together to bridge the gap between established empirical force fields that have a high degree of transferability on the one hand, and the machine learned potentials that are systematically improvable and can converge to very high accuracy, on the other. Our framework extends the atomic permutationally invariant polynomials (aPIP) developed for elemental materials in (2019 Mach. Learn.: Sci. Technol. 1 015004) to molecular systems. The body order decomposition allows us to keep the dimensionality of each term low, while the use of an iterative fitting scheme as well as regularisation procedures improve the extrapolation outside the training set. We investigate aPIP force fields with up to generalised 4-body terms, and examine the performance on a set of small organic molecules. We achieve a high level of accuracy when fitting individual molecules, comparable to those of the many-body machine learned force fields. Fitted to a combined training set of short linear alkanes, the accuracy of the aPIP force field still significantly exceeds what can be expected from classical empirical force fields, while retaining reasonable transferability to both configurations far from the training set and to new molecules

    Regularised Atomic Body-Ordered Permutation-Invariant Polynomials for the Construction of Interatomic Potentials

    No full text
    We investigate the use of invariant polynomials in the construction of data-driven interatomic potentials for material systems. The "atomic body-ordered permutation-invariant polynomials" (aPIPs) comprise a systematic basis and are constructed to preserve the symmetry of the potential energy function with respect to rotations and permutations. In contrast to kernel based and artificial neural network models, the explicit decomposition of the total energy as a sum of atomic body-ordered terms allows to keep the dimensionality of the fit reasonably low, up to just 10 for the 5-body terms. The explainability of the potential is aided by this decomposition, as the low body-order components can be studied and interpreted independently. Moreover, although polynomial basis functions are thought to extrapolate poorly, we show that the low dimensionality combined with careful regularisation actually leads to better transferability than the high dimensional, kernel based Gaussian Approximation Potential

    Atomic Cluster Expansion: Completeness, Efficiency and Stability

    No full text
    The Atomic Cluster Expansion (Drautz, Phys. Rev. B 99, 2019) provides a framework to systematically derive polynomial basis functions for approximating isometry and permutation invariant functions, particularly with an eye to modelling properties of atomistic systems. Our presentation extends the derivation by proposing a precomputation algorithm that yields immediate guarantees that a complete basis is obtained. We provide a fast recursive algorithm for efficient evaluation and illustrate its performance in numerical tests. Finally, we discuss generalisations and open challenges, particularly from a numerical stability perspective, around basis optimisation and parameter estimation, paving the way towards a comprehensive analysis of the convergence to a high-fidelity reference model
    corecore