249 research outputs found

    Magnetic Effects on Dielectric and Polarization Behavior of Multiferroic Hetrostructures

    Full text link
    PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3(PZT/LSMO) bilayer with surface roughness ~ 1.8 nm thin films have been grown by pulsed laser deposition on LaAlO3(LAO) substrates. High remnant polarization (30-54 micro C/cm2), dielectric constant(400-1700), and well saturated magnetization were observed depending upon the deposition temperature of the ferromagnetic layer and applied frequencies. Giant frequency-dependent change in dielectric constant and loss were observed above the ferromagnetic-paramagnetic temperature. The frequency dependent dielectric anomalies are attributed to the change in metallic and magnetic nature of LSMO and also the interfacial effect across the bilayer; an enhanced magnetoelectric interaction may be due to the Parish-Littlewood mechanism of inhomogeneity near the metal-dielectric interface.Comment: 9 pages, 4 figure

    Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars

    Full text link
    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge ZZ. Nuclei with Z≤6Z\le 6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the SS factor for fusion reactions of neutron rich nuclei including 24^{24}O + 24^{24}O and 28^{28}Ne + 28^{28}Ne. We use a simple barrier penetration model. The SS factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in SS should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear 24^{24}O + 24^{24}O fusion and find that 24^{24}O should burn at densities near 101110^{11} g/cm3^3. The energy released from this and similar reactions may be important for the temperature profile of the star.Comment: 7 pages, 4 figs, minor changes, to be published in Phys. Rev.

    Enhancing the conversion of D-xylose into furfural at low temperatures using chloride salts as co-catalysts: Catalytic combination of AlCl3 and formic acid

    Get PDF
    peer-reviewedThe full text of this article will not be available on ULIR until the embargo expires on the 26/4/2019Furfural is a potential platform chemical derived from biomass, which has gained increased attention as a potential substitute for the displacement of petrochemicals and the production of biofuels. The catalytic effect of different metal tri-chlorides (FeCl3, AlCl3 and CrCl3) with formic acid (FA) was investigated for the selective conversion of D-xylose to furfural in aqueous solutions. Reactions were carried out at various temperatures (100–170 C), FA concentrations (0–65 wt%), and metal chloride concentrations (0.2– 0.8 M). Lyxose was identified as primary intermediate of the conversion of xylose at low temperatures and FA concentrations. A mixture containing 0.4 M AlCl3 and 55 wt% FA was the most selective and active system for the production of furfural at low temperatures (130 C, selectivity 70–90%). A simplified kinetic model was developed to describe the overall xylose conversion and furfural formation under the selected conditions, offering a valuable tool for process optimisation and design.ACCEPTEDpeer-reviewe

    Disjoining Potential and Spreading of Thin Liquid Layers in the Diffuse Interface Model Coupled to Hydrodynamics

    Full text link
    The hydrodynamic phase field model is applied to the problem of film spreading on a solid surface. The disjoining potential, responsible for modification of the fluid properties near a three-phase contact line, is computed from the solvability conditions of the density field equation with appropriate boundary conditions imposed on the solid support. The equation describing the motion of a spreading film are derived in the lubrication approximation. In the case of quasi-equilibrium spreading, is shown that the correct sharp-interface limit is obtained, and sample solutions are obtained by numerical integration. It is further shown that evaporation or condensation may strongly affect the dynamics near the contact line, and accounting for kinetic retardation of the interphase transport is necessary to build up a consistent theory.Comment: 14 pages, 5 figures, to appear in PR

    On the Interface Formation Model for Dynamic Triple Lines

    Full text link
    This paper revisits the theory of Y. Shikhmurzaev on forming interfaces as a continuum thermodynamical model for dynamic triple lines. We start with the derivation of the balances for mass, momentum, energy and entropy in a three-phase fluid system with full interfacial physics, including a brief review of the relevant transport theorems on interfaces and triple lines. Employing the entropy principle in the form given in [Bothe & Dreyer, Acta Mechanica, doi:10.1007/s00707-014-1275-1] but extended to this more general case, we arrive at the entropy production and perform a linear closure, except for a nonlinear closure for the sorption processes. Specialized to the isothermal case, we obtain a thermodynamically consistent mathematical model for dynamic triple lines and show that the total available energy is a strict Lyapunov function for this system

    Pairing in high-density neutron matter including short- and long-range correlations

    Get PDF
    Pairing gaps in neutron matter need to be computed in a wide range of densities to address open questions in neutron-star phenomenology. Traditionally, the Bardeen-Cooper-Schrieffer approach has been used to compute gaps from bare nucleon-nucleon interactions. Here we incorporate the influence of short-and long-range correlations in the pairing gaps. Short-range correlations are treated, including the appropriate fragmentation of single-particle states, and substantially suppress the gaps. Long-range correlations dress the pairing interaction via density and spin modes and provide a relatively small correction. We use different interactions, some with three-body forces, as a starting point to control for any systematic effects. Results are relevant for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A
    • …
    corecore