73 research outputs found

    The value of ischemia-modified albumin compared with d-dimer in the diagnosis of pulmonary embolism

    Get PDF
    <p>Abstract</p> <p>Study objective</p> <p>The primary aim of this study was to investigate whether IMA levels are helpful in the diagnosis of pulmonary embolism (PE). The secondary aim was to determine whether IMA was more effective alone or in combination with clinical probability scores in the diagnosis of PE. Thirdly, the sensitivity and specificity of IMA is compared with D-dimer both with and without clinical probability scores in patients with suspected PE.</p> <p>Methods</p> <p>Consecutive patients presenting to the emergency department with suspected PE were prospectively recruited, and healthy volunteers were also enrolled as controls. D-dimer and IMA levels were measured for the entire study group. Wells and Geneva scores were calculated and s-CTPA was performed on all suspected PE patients.</p> <p>Results</p> <p>The study population consisted of 130 patients with suspected PE and 59 healthy controls. Mean IMA levels were 0.362 ± 0.11 ABSU for Group A, the PE group (n = 75); 0.265 ± 0.07 ABSU for Group B, the non-PE group (n = 55); and 0.175 ± 0.05 ABSU for Group C, the healthy control group (p < 0.0001). At a cut-off point of 0.25 ABSU, IMA was 93% sensitive and 75% specific in the diagnosis of PE. PPV was 79.4% and NPV was 78.6%. Mean D-dimer levels were 12.48 ± 10.88 μg/ml for Group A; 5.36 ± 7.80 μg/ml for Group B and 0.36 ± 0.16 μg/ml for Group C (p < 0.0001). The D-dimer cut-off point was 0.81 μg/ml with a sensitivity of 98.9% and a specificity of 62.7%, PPV of 69.4% and NPV of 83.3%. The use of IMA in combination with Wells and Geneva clinical probability scores was determined to have a positive impact on these scores' sensitivity and negative predictive values.</p> <p>Conclusion</p> <p>IMA is a good alternative to D-dimer in PE diagnosis in terms of both cost and efficiency. Used in combination with clinical probability scores, it has a similar positive effect on NPV and sensitivity to that of D-dimer. The PPV of IMA is better than D-dimer, but it is still unable to confirm a diagnosis of PE without additional investigation.</p

    Brown Carbon Aerosol in Urban Xi’an, Northwest China: TheComposition and Light Absorption Properties

    Get PDF
    Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi&#39;an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) was found to correlate strongly with both parent polycyclic aromatic hydrocarbons (parent-PAHs, 27 species) and their carbonyl oxygenated derivatives (carbonyl-OPAHs, 15 species) in all seasons (r(2) &gt; 0.61). These measured parent-PAHs and carbonyl-OPAHs account for on average similar to 1.7% of the overall absorption of methanol-soluble BrC, about 5 times higher than their mass fraction in total organic carbon (OC, similar to 0.35%). The fractional solar absorption by BrC relative to element carbon (EC) in the ultraviolet range (300-400 nm) is significant during winter (42 +/- 18% for water-soluble BrC and 76 +/- 29% for methanol-soluble BrC), which may greatly affect the radiative balance and tropospheric photochemistry and therefore the climate and air quality

    Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S5, doi:10.1186/1476-069X-7-S2-S5.Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.The authors acknowledge the financial support for the NSF/NIEHS and NOAA Centers for Oceans and Human Healt

    Optimal foraging and community structure: implications for a guild of generalist grassland herbivores

    Full text link
    A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd

    Neospora caninum

    No full text

    Patients Receiving Integrative Medicine Effectiveness Registry (PRIMIER) of the BraveNet practice-based research network: study protocol

    No full text
    BACKGROUND: Integrative medicine (IM) provides patient-centered care and addresses the full range of physical, emotional, mental, social, spiritual, and environmental influences that affect a person’s health. IM is a “whole systems” approach that employs multiple modalities as opposed to an isolated complementary therapy. Thus, studying outcomes of IM is more challenging than evaluating an isolated intervention. Practice-based research networks (PBRNs) allow for clinicians/investigators at multiple diverse sites using common methodology to pool their data, increase participant sample size and increase generalizability of results. To conduct real-world, practice-based research, the Bravewell Collaborative founded BraveNet in 2007 as the first national integrative medicine PBRN. METHODS AND DESIGN: Patients Receiving Integrative Medicine Effectiveness Registry (PRIMIER) is a prospective, non-randomized, observational evaluation conducted at fourteen clinical sites. Participants receive a non-standardized, personalized, multimodal IM approach for various medical conditions. Using the REDCap electronic platform, an anticipated 10,000 study participants will complete patient-reported outcome measures including Patient Reported Outcomes Measurement Information System (PROMIS)-29, Perceived Stress Scale-4, and the Patient Activation Measure at baseline, 2, 4, 6, 12, 18 and 24 months. Extractions from participants’ electronic health records include IM services received, as well as ICD diagnostic codes, and CPT billing codes associated with each IM visit. Repeated-measures analyses will be performed on data to assess change from baseline through 24 months with planned subgroup analyses to include specific clinical population and specific IM intervention or combinations. DISCUSSION: As the PRIMIER registry grows, we anticipate that our results would provide an indication of the promise of PBRN research efforts in IM. Analyses will incorporate a large sample of participants and an expected 10-year observation period and will provide the ability to evaluate the effect of IM on outcomes for specific clinical populations and specific IM interventions or combinations. As such, PRIMIER will serve as a national platform for future evaluations of IM best practices. TRIAL REGISTRATION: Clinical Trials.gov NCT01754038 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12906-016-1025-0) contains supplementary material, which is available to authorized users

    Retinal microstructure in patients with EFEMP1 retinal dystrophy evaluated by Fourier domain OCT

    No full text
    OBJECTIVES: To investigate retinal microstructure of patients affected with malattia leventinese (MLVT) and mutation in the EFEMP1 gene using high-resolution optical coherence tomography (OCT). METHODS: Patients diagnosed with MLVT received a comprehensive eye exam, full-field and multifocal electroretinogram testing and imaging with a high-resolution Fourier domain OCT (Fd-OCT, UC Davis Medical Center, Davis, USA; axial resolution: 4.5 μm, acquisition speed: 9 frames s(−1), 1000 A scans s(−1)) combined with a flexible scanning head (Bioptigen Inc. Durham, NC, USA). RESULTS: Two related patients aged 30 and 60 years, with MLVT and identified c.R345W mutation in the EFEMP1 gene, were tested. Mother and daughter showed a variable phenotype with reduced vision function in the younger patient, whereas the mother had a ‘form frustre’. Fd-OCT revealed extensive or focal sub-retinal pigment epithelium (RPE) deposits, separation of RPE and Bruch's membrane, and disruption of the photoreceptor outer and inner segment layers. No outer retinal changes were visible outside areas with sub-RPE deposits. CONCLUSION: Retinal structure in EFEMP1 retinal dystrophy is reflected by morphological changes within the RPE/Bruch's membrane complex with accumulation of sub-RPE material associated with disrupted photoreceptor integrity. The pattern of microstructural retinal abnormalities is similar but with a different extent in patients with variable phenotypes

    Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds

    No full text
    Despite the importance of migratory birds in the ecology and evolution of avian influenza virus (AIV), there is a lack of information on the patterns of AIV spread at the intra-continental scale. We applied a variety of statistical phylogeographic techniques to a plethora of viral genome sequence data to determine the strength, pattern and determinants of gene flow in AIV sampled from wild birds in North America. These analyses revealed a clear isolation-by-distance of AIV among sampling localities. In addition, we show that phylogeographic models incorporating information on the avian flyway of sampling proved a better fit to the observed sequence data than those specifying homogeneous or random rates of gene flow among localities. In sum, these data strongly suggest that the intra-continental spread of AIV by migratory birds is subject to major ecological barriers, including spatial distance and avian flyway. © 2011 Blackwell Publishing Ltd/CNRS.link_to_subscribed_fulltex
    corecore