50 research outputs found
Recommended from our members
The LCLS Timing Event System
The Linac Coherent Light Source requires precision timing trigger signals for various accelerator diagnostics and controls at SLAC-NAL. A new timing system has been developed that meets these requirements. This system is based on COTS hardware with a mixture of custom-designed units. An added challenge has been the requirement that the LCLS Timing System must co-exist and 'know' about the existing SLC Timing System. This paper describes the architecture, construction and performance of the LCLS timing event system
Recommended from our members
A 4 GSa/s Instability Feedback Processing System for Intra-Bunch Instabilities
Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon
With accelerating environmental change, understanding forest disturbance impacts on trade-offs between biodiversity and carbon dynamics is of high socio-economic importance. Most studies, however, have assessed immediate or short-term effects of disturbance, while long-term impacts remain poorly understood. Using a tree-ring-based approach, we analysed the effect of 250 years of disturbances on present-day biodiversity indicators and carbon dynamics in primary forests. Disturbance legacies spanning centuries shaped contemporary forest co-benefits and trade-offs, with contrasting, local-scale effects. Disturbances enhanced carbon sequestration, reaching maximum rates within a comparatively narrow post-disturbance window (up to 50 years). Concurrently, disturbance diminished aboveground carbon storage, which gradually returned to peak levels over centuries. Temporal patterns in biodiversity potential were bimodal; the first maximum coincided with the short-term post-disturbance carbon sequestration peak, and the second occurred during periods of maximum carbon storage in complex old-growth forest. Despite fluctuating local-scale trade-offs, forest biodiversity and carbon storage remained stable across the broader study region, and our data support a positive relationship between carbon stocks and biodiversity potential. These findings underscore the interdependencies of forest processes, and highlight the necessity of large-scale conservation programmes to effectively promote both biodiversity and long-term carbon storage, particularly given the accelerating global biodiversity and climate crises
Recommended from our members
The Simons Observatory: Science goals and forecasts
The Simons Observatory (SO) is a new cosmic microwave background experiment
being built on Cerro Toco in Chile, due to begin observations in the early
2020s. We describe the scientific goals of the experiment, motivate the design,
and forecast its performance. SO will measure the temperature and polarization
anisotropy of the cosmic microwave background in six frequency bands: 27, 39,
93, 145, 225 and 280 GHz. The initial configuration of SO will have three
small-aperture 0.5-m telescopes (SATs) and one large-aperture 6-m telescope
(LAT), with a total of 60,000 cryogenic bolometers. Our key science goals are
to characterize the primordial perturbations, measure the number of
relativistic species and the mass of neutrinos, test for deviations from a
cosmological constant, improve our understanding of galaxy evolution, and
constrain the duration of reionization. The SATs will target the largest
angular scales observable from Chile, mapping ~10% of the sky to a white noise
level of 2 K-arcmin in combined 93 and 145 GHz bands, to measure the
primordial tensor-to-scalar ratio, , at a target level of .
The LAT will map ~40% of the sky at arcminute angular resolution to an expected
white noise level of 6 K-arcmin in combined 93 and 145 GHz bands,
overlapping with the majority of the LSST sky region and partially with DESI.
With up to an order of magnitude lower polarization noise than maps from the
Planck satellite, the high-resolution sky maps will constrain cosmological
parameters derived from the damping tail, gravitational lensing of the
microwave background, the primordial bispectrum, and the thermal and kinematic
Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle
polarization signal to measure the tensor-to-scalar ratio. The survey will also
provide a legacy catalog of 16,000 galaxy clusters and more than 20,000
extragalactic sources
Microwave multiplexing on the Keck Array
We describe an on-sky demonstration of a microwave-multiplexing readout
system in one of the receivers of the Keck Array, a polarimetry experiment
observing the cosmic microwave background at the South Pole. During the austral
summer of 2018-2019, we replaced the time-division multiplexing readout system
with microwave-multiplexing components including superconducting microwave
resonators coupled to radio-frequency superconducting quantum interference
devices at the sub-Kelvin focal plane, coaxial-cable plumbing and amplification
between room temperature and the cold stages, and a SLAC Microresonator Radio
Frequency system for the warm electronics. In the range 5-6 GHz, a single
coaxial cable reads out 528 channels. The readout system is coupled to
transition-edge sensors, which are in turn coupled to 150-GHz slot-dipole
phased-array antennas. Observations began in April 2019, and we report here on
an initial characterization of the system performance.Comment: 9 pages, 11 figures, Accepted by the Journal of Low Temperature
Physics (Proceedings of the 18th International Workshop on Low Temperature
Detectors