20 research outputs found

    Minimum joint space width and tibial cartilage morphology in the knees of healthy individuals: A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical use of minimum joint space width (mJSW) and cartilage volume and thickness has been limited to the longitudinal measurement of disease progression (i.e. change over time) rather than the diagnosis of OA in which values are compared to a standard. This is primarily due to lack of establishment of normative values of joint space width and cartilage morphometry as has been done with bone density values in diagnosing osteoporosis. Thus, the purpose of this pilot study is to estimate reference values of medial joint space width and cartilage morphometry in healthy individuals of all ages using standard radiography and peripheral magnetic resonance imaging.</p> <p>Design</p> <p>For this cross-sectional study, healthy volunteers underwent a fixed-flexion knee X-ray and a peripheral MR (pMR) scan of the same knee using a 1T machine (ONI OrthOne™, Wilmington, MA). Radiographs were digitized and analyzed for medial mJSW using an automated algorithm. Only knees scoring ≤1 on the Kellgren-Lawrence scale (no radiographic evidence of knee OA) were included in the analyses. All 3D SPGRE fat-sat sagittal pMR scans were analyzed for medial tibial cartilage morphometry using a proprietary software program (Chondrometrics GmbH).</p> <p>Results</p> <p>Of 119 healthy participants, 73 were female and 47 were male; mean (SD) age 38.2 (13.2) years, mean BMI 25.0 (4.4) kg/m<sup>2</sup>. Minimum JSW values were calculated for each sex and decade of life. Analyses revealed mJSW did not significantly decrease with increasing decade (p > 0.05) in either sex. Females had a mean (SD) medial mJSW of 4.8 (0.7) mm compared to males with corresponding larger value of 5.7 (0.8) mm. Cartilage morphometry results showed similar trends with mean (SD) tibial cartilage volume and thickness in females of 1.50 (0.19) μL/mm<sup>2 </sup>and 1.45 (0.19) mm, respectively, and 1.77 (0.24) μL/mm<sup>2 </sup>and 1.71 (0.24) mm, respectively, in males.</p> <p>Conclusion</p> <p>These data suggest that medial mJSW values do not decrease with aging in healthy individuals but remain fairly constant throughout the lifespan with "healthy" values of 4.8 mm for females and 5.7 mm for males. Similar trends were seen for cartilage morphology. Results suggest there may be no need to differentiate a t-score and a z-score in OA diagnosis because cartilage thickness and JSW remain constant throughout life in the absence of OA.</p

    Brief Report: Development and Validation of a Semiautomated Method to Measure Erosion Volume in Inflammatory Arthritis by Computed Tomography Scanning

    No full text
    OBJECTIVE: Valid measurement of erosion volume in rheumatoid arthritis (RA) will facilitate the testing of treatments that may help to heal erosion. This study was undertaken to develop and validate a software method to measure erosion volume on computed tomography (CT) scans of the hand and wrist. METHODS: Duplicate CT acquisitions of both hands of 5 patients with RA were evaluated using a semiautomated software tool to measure erosion volume in the entire hand and wrist and in each of 6 subregions. Reproducibility was quantified using the intraclass correlation coefficient (ICC), root mean square standard deviation (RMSSD), and coefficient of variation (CV), and the analysis was performed at the level of the hand (n = 10) and the subject (n = 5). RESULTS: The ICCs between 2 repositioned acquisitions were excellent, ranging from 0.97 to 1.00. At the hand level, the RMSSD was 15.6 mm(3) with a CV of 7.3%, and the CVs at the 6 regions ranged from 7.6% to 21.0%. At the subject level, the RMSSD was 31.2 mm(3) with a CV of 3.7%, and the CVs at the 6 regions ranged from 0.5% to 15.8%. CONCLUSION: We have developed a novel semiautomated software method to measure erosion volume on hand and wrist CT scans. The method is reproducible and can be used to detect changes in erosion volume. This will facilitate the testing of treatments intended to reduce erosion volume

    Reliability and Validity of Single Axial Slice vs. Multiple Slice Quantitative Measurement of the Volume of Effusion-Synovitis on 3T Knee MRI in Knees with Osteoarthritis

    No full text
    Effusion-synovitis (ES) is recognized as a component of osteoarthritis, creating a need for rapid methods to assess ES on MRI. We describe the development and reliability of an efficient single-slice semi-automated quantitative approach to measure ES. We used two samples from the Osteoarthritis Initiative (OAI): 50 randomly selected OAI participants with radiographic osteoarthritis (i.e., Kellgren–Lawrence (KL) grade 2 or 3) and a subset from the Foundation for the National Institutes of Health Osteoarthritis Biomarker study. An experienced musculoskeletal radiologist trained four non-expert readers to use custom semi-automated software to measure ES on a single axial slice and then read scans blinded to prior assessments. The estimated intraclass correlation coefficient (ICC) for intra-reader reliability of the single-slice ES method in the KL 2–3 sample was 0.96 (95% CI: 0.93, 0.97), and for inter-reader reliability, the ICC was 0.90 (95% CI: 0.87, 0.95). The intra-reader mean absolute difference (MAD) was 35 mm3 (95% CI: 28, 44), and the inter-reader MAD was 61 mm3 (95% CI: 48, 76). Our single-slice quantitative knee ES measurement offers a reliable, valid, and efficient surrogate for multi-slice quantitative and semi-quantitative assessment

    Role of Magnetic Resonance Imaging in Classifying Individuals Who Will Develop Accelerated Radiographic Knee Osteoarthritis.

    Get PDF
    We assessed whether adding magnetic resonance (MR)-based features to a base model of clinically accessible participant characteristics (i.e., serological, radiographic, demographic, symptoms, and physical function) improved classification of adults who developed accelerated radiographic knee osteoarthritis (AKOA) or not over the subsequent 4 years. We conducted a case-control study using radiographs from baseline and the first four annual visits of the osteoarthritis initiative to define groups. Eligible individuals had no radiographic KOA in either knee at baseline (Kellgren-Lawrence [KL] grade <2). We classified two groups matched on sex (i) AKOA: at least one knee developed advanced-stage KOA (KL = 3 or 4) within 48 months and (ii) did not develop AKOA within 48 months. The MR-based features were assessments of bone, effusion/synovitis, tendons, ligaments, cartilage, and menisci. All characteristics and MR-based features were from the baseline visit. Classification and regression tree analyses were performed to determine classification rules and identify statistically important variables. The CART models with and without MR features each explained approximately 40% of the variability. Adding MR-based features to the model yielded modest improvements in specificity (0.90 vs. 0.82) but lower sensitivity (0.62 vs. 0.70) than the base model. There was consistent evidence that serum glucose, effusion-synovitis volume, and cruciate ligament degeneration are statistically important variables in classifying individuals who will develop AKOA. We found common MR-based measures failed to dramatically improve classification. These findings also show a complex interplay among participant characteristics and a need to identify novel characteristics to improve classification. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2420-2428, 2019
    corecore