725 research outputs found

    Vector and Tensor Contributions to the Luminosity Distance

    Full text link
    We compute the vector and tensor contributions to the luminosity distance fluctuations in first order perturbation theory and we expand them in spherical harmonics. This work presents the formalism with a first application to a stochastic background of primordial gravitational waves.Comment: 14 pages, 3 figure

    Tensor Microwave Anisotropies from a Stochastic Magnetic Field

    Get PDF
    We derive an expression for the angular power spectrum of cosmic microwave background anisotropies due to gravity waves generated by a stochastic magnetic field and compare the result with current observations; we take into account the non-linear nature of the stress energy tensor of the magnetic field. For almost scale invariant spectra, the amplitude of the magnetic field at galactic scales is constrained to be of order 10^{-9} Gauss. If we assume that the magnetic field is damped below the Alfven damping scale, we find that its amplitude at 0.1 h^{-1}Mpc, B_\lambda, is constrained to be B_\lambda<7.9 x10^{-6} e^{3n} Gauss, for n-3/2, where n is the spectral index of the magnetic field and H_0=100h km s^{-1}Mpc^{-1} is the Hubble constant today.Comment: 6 pages, 1 figure, accepted for publication in Phys. Rev.

    Tensor Bounds on the Hidden Universe

    Get PDF
    During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large NN resummation. We detour to address certain subtleties regarding loop corrections during inflation, extending the analysis of [1]. Our main result is that one can extract bounds on the hidden field content of the universe from bounds on violations of the consistency relation between the tensor spectral index and the tensor to scalar ratio, were primordial tensors ever detected. Such bounds are more competitive than the naive bound inferred from requiring inflation to occur below the strong coupling scale of gravity if deviations from the consistency relation can be bounded to within the sub-percent level. We discuss how one can meaningfully constrain the parameter space of various phenomenological scenarios and constructions that address naturalness with a large number of species (such as `N-naturalness') with CMB observations up to cosmic variance limits, and possibly future 21cm and gravitational wave observations.Comment: 14 pages, 4 figures, 3 appendices. Version accepted to JHEP; references added, updated bounds on rr incorporate

    Skewness as a probe of non-Gaussian initial conditions

    Get PDF
    We compute the skewness of the matter distribution arising from non-linear evolution and from non-Gaussian initial perturbations. We apply our result to a very generic class of models with non-Gaussian initial conditions and we estimate analytically the ratio between the skewness due to non-linear clustering and the part due to the intrinsic non-Gaussianity of the models. We finally extend our estimates to higher moments.Comment: 5 pages, 2 ps-figs., accepted for publication in PRD, rapid com

    Generation of helical magnetic fields from inflation

    Full text link
    The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed field strength on cosmologically relevant scales.Comment: 4 pages, 1 figure; Contribution to the proceedings of the International Conference on Gravitation and Cosmology (ICGC), Goa, India, December, 201

    Are there static texture?

    Get PDF
    We consider harmonic maps from Minkowski space into the three sphere. We are especially interested in solutions which are asymptotically constant, i.e. converge to the same value in all directions of spatial infinity. Physical 3-space can then be compactified and can be identified topologically (but not metrically!) with a three sphere. Therefore, at fixed time, the winding of the map is defined. We investigate whether static solutions with non-trivial winding number exist. The answer which we can proof here is only partial: We show that within a certain family of maps no static solutions with non-zero winding number exist. We discuss the existing static solutions in our family of maps. An extension to other maps or a proof that our family of maps is sufficiently general remains an open problem.Comment: 12 page Latex file, 1 postscript figure, submitted to PR

    CMB temperature anisotropy at large scales induced by a causal primordial magnetic field

    Full text link
    We present an analytical derivation of the Sachs Wolfe effect sourced by a primordial magnetic field. In order to consistently specify the initial conditions, we assume that the magnetic field is generated by a causal process, namely a first order phase transition in the early universe. As for the topological defects case, we apply the general relativistic junction conditions to match the perturbation variables before and after the phase transition which generates the magnetic field, in such a way that the total energy momentum tensor is conserved across the transition and Einstein's equations are satisfied. We further solve the evolution equations for the metric and fluid perturbations at large scales analytically including neutrinos, and derive the magnetic Sachs Wolfe effect. We find that the relevant contribution to the magnetic Sachs Wolfe effect comes from the metric perturbations at next-to-leading order in the large scale limit. The leading order term is in fact strongly suppressed due to the presence of free-streaming neutrinos. We derive the neutrino compensation effect dynamically and confirm that the magnetic Sachs Wolfe spectrum from a causal magnetic field behaves as l(l+1)C_l^B \propto l^2 as found in the latest numerical analyses.Comment: 31 pages, 2 figures, minor changes, matches published versio

    Large Scale Structure Formation with Global Topological Defects. A new Formalism and its implementation by numerical simulations

    Get PDF
    We investigate cosmological structure formation seeded by topological defects which may form during a phase transition in the early universe. First we derive a partially new, local and gauge invariant system of perturbation equations to treat microwave background and dark matter fluctuations induced by topological defects or any other type of seeds. We then show that this system is well suited for numerical analysis of structure formation by applying it to seeds induced by fluctuations of a global scalar field. Our numerical results are complementary to previous investigations since we use substantially different methods. The resulting microwave background fluctuations are compatible with older simulations. We also obtain a scale invariant spectrum of fluctuations with about the same amplitude. However, our dark matter results yield a smaller bias parameter compatible with b2b\sim 2 on a scale of 20Mpc20 Mpc in contrast to previous work which yielded to large bias factors. Our conclusions are thus more positive. According to the aspects analyzed in this work, global topological defect induced fluctuations yield viable scenarios of structure formation and do better than standard CDM on large scales.Comment: uuencoded, compressed tar-file containing the text in LaTeX and 12 Postscript Figures, 41 page

    Cosmic Microwave Background Anisotropies from Scaling Seeds: Global Defect Models

    Get PDF
    We investigate the global texture model of structure formation in cosmogonies with non-zero cosmological constant for different values of the Hubble parameter. We find that the absence of significant acoustic peaks and little power on large scales are robust predictions of these models. However, from a careful comparison with data we conclude that at present we cannot safely reject the model on the grounds of present CMB data. Exclusion by means of galaxy correlation data requires assumptions on biasing and statistics. New, very stringent constraints come from peculiar velocities. Investigating the large-N limit, we argue that our main conclusions apply to all global O(N) models of structure formation.Comment: LaTeX file with RevTex, 27 pages, 23 eps figs., submitted to Phys. Rev. D. A version with higher quality images can be found at http://mykonos.unige.ch/~kunz/download/lam.tar.gz for the LaTeX archive and at http://mykonos.unige.ch/~kunz/download/lam.ps.gz for the compiled PostScript fil

    Analytical modeling of large-angle CMBR anisotropies from textures

    Full text link
    We propose an analytic method for predicting the large angle CMBR temperature fluctuations induced by model textures. The model makes use of only a small number of phenomenological parameters which ought to be measured from simple simulations. We derive semi-analytically the ClC^l-spectrum for 2l302\leq l\leq 30 together with its associated non-Gaussian cosmic variance error bars. A slightly tilted spectrum with an extra suppression at low ll is found, and we investigate the dependence of the tilt on the parameters of the model. We also produce a prediction for the two point correlation function. We find a high level of cosmic confusion between texture scenarios and standard inflationary theories in any of these quantities. However, we discover that a distinctive non-Gaussian signal ought to be expected at low ll, reflecting the prominent effect of the last texture in these multipoles
    corecore