884 research outputs found

    Cosmic Microwave Background Anisotropies from Scaling Seeds: Fit to Observational Data

    Get PDF
    We compute cosmic microwave background angular power spectra for scaling seed models of structure formation. A generic parameterization of the energy momentum tensor of the seeds is employed. We concentrate on two regions of parameter space inspired by global topological defects: O(4) texture models and the large-N limit of O(N) models. We use χ2\chi^{2} fitting to compare these models to recent flat-band power measurements of the cosmic microwave background. Only scalar perturbations are considered.Comment: LaTeX file 4 pages, 4 postscript figs. revised version, to appear in PR

    Interactions of cosmological gravitational waves and magnetic fields

    Full text link
    The energy momentum tensor of a magnetic field always contains a spin-2 component in its anisotropic stress and therefore generates gravitational waves. It has been argued in the literature (Caprini & Durrer \cite{CD}) that this gravitational wave production can be very strong and that back-reaction cannot be neglected. On the other hand, a gravitational wave background does affect the evolution of magnetic fields. It has also been argued (Tsagas et al. \cite{Tsagas:2001ak},\cite{Tsagas:2005ki}) that this can lead to very strong amplification of a primordial magnetic field. In this paper we revisit these claims and study back reaction to second order.Comment: Added references, accepted for publication in PR

    Vector and Tensor Contributions to the Luminosity Distance

    Full text link
    We compute the vector and tensor contributions to the luminosity distance fluctuations in first order perturbation theory and we expand them in spherical harmonics. This work presents the formalism with a first application to a stochastic background of primordial gravitational waves.Comment: 14 pages, 3 figure

    What do we really know about Dark Energy?

    Full text link
    In this paper I discuss what we truly know about dark energy. I shall argue that up to date our single indication for the existence of dark energy comes from distance measurements and their relation to redshift. Supernovae, CMB anisotropies and observations of baryon acoustic oscillations, they all simply tell us that the observed distance to a given redshift is larger than the one expected from a Friedmann Lemaitre universe with matter only and the locally measured Hubble parameter.Comment: invited talk at the meeting "Cosmological Tests of General Relativity" at the Kavli Royal Society Center for the Advancement of Science organized by Rachel Bean, Pedro Ferreira and Andy Taylor. 14p 2 figs. revised version: updated to match version in print in Phil. Trans. R. Soc.

    Reproducing the observed Cosmic microwave background anisotropies with causal scaling seeds

    Get PDF
    During the last years it has become clear that global O(N) defects and U(1) cosmic strings do not lead to the pronounced first acoustic peak in the power spectrum of anisotropies of the cosmic microwave background which has recently been observed to high accuracy. Inflationary models cannot easily accommodate the low second peak indicated by the data. Here we construct causal scaling seed models which reproduce the first and second peak. Future, more precise CMB anisotropy and polarization experiments will however be able to distinguish them from the ordinary adiabatic models.Comment: 6 pages 2 figures, revtex; minor corrections and references adde

    Testing Superstring Theories with Gravitational Waves

    Full text link
    We provide a simple transfer function that determines the effect of an early matter dominated era on the gravitational wave background and show that a large class of compactifications of superstring theory might be tested by observations of the gravitational wave background from inflation. For large enough reheating temperatures > 10^9 \GeV the test applies to all models containing at least one scalar with mass < 10^{12}\GeV that acquires a large initial oscillation amplitude after inflation and has only gravitational interaction strength, i.e., a field with the typical properties of a modulus.Comment: 5 pages 2 figures, v2: changes in presentation, refs revised, matches version in print in PR

    The Cosmic Microwave Background and Helical Magnetic Fields: the tensor mode

    Full text link
    We study the effect of a possible helicity component of a primordial magnetic field on the tensor part of the cosmic microwave background temperature anisotropies and polarization. We give analytical approximations for the tensor contributions induced by helicity, discussing their amplitude and spectral index in dependence of the power spectrum of the primordial magnetic field. We find that an helical magnetic field creates a parity odd component of gravity waves inducing parity odd polarization signals. However, only if the magnetic field is close to scale invariant and if its helical part is close to maximal, the effect is sufficiently large to be observable. We also discuss the implications of causality on the magnetic field spectrum.Comment: We have corrected a normalisation error which was pointed out to us by Antony Lewis. It enhances our limits on the magnetic fields by (2\pi)^{3/4} ~

    Dynamical Casimir effect for gravitons in bouncing braneworlds

    Full text link
    We consider a two-brane system in a five-dimensional anti-de Sitter spacetime. We study particle creation due to the motion of the physical brane which first approaches the second static brane (contraction) and then recedes from it(expansion). The spectrum and the energy density of the generated gravitons are calculated. We show that the massless gravitons have a blue spectrum and that their energy density satisfies the nucleosynthesis bound with very mild constraints on the parameters. We also show that the Kaluza-Klein modes cannot provide the dark matter in an anti-de-Sitter braneworld. However, for natural choices of parameters, backreaction from the Kaluza-Klein gravitons may well become important. The main findings of this work have been published in the form of a Letter [R. Durrer and M. Ruser, Phys. Rev. Lett. 99, 071601 (2007), arXiv:0704.0756].Comment: 40 pages, 34 figures, improved and extended version, matches published versio

    CMB anisotropies from acausal scaling seeds

    Full text link
    We investigate models where structure formation is initiated by scaling seeds: We consider rapidly expanding relativistic shells of energy and show that they can fit current CMB and large scale structure data if they expand with super-luminal velocities. These acausally expanding shells provide a viable alternative to inflation for cosmological structure formation with the same minimal number of parameters to characterize the initial fluctuations. Causally expanding shells alone cannot fit present data. Hybrid models where causal shells and inflation are mixed also provide good fits.Comment: 9 pages,13 figures, revised version accepted for publication in PR
    • …
    corecore