Abstract

We study the effect of a possible helicity component of a primordial magnetic field on the tensor part of the cosmic microwave background temperature anisotropies and polarization. We give analytical approximations for the tensor contributions induced by helicity, discussing their amplitude and spectral index in dependence of the power spectrum of the primordial magnetic field. We find that an helical magnetic field creates a parity odd component of gravity waves inducing parity odd polarization signals. However, only if the magnetic field is close to scale invariant and if its helical part is close to maximal, the effect is sufficiently large to be observable. We also discuss the implications of causality on the magnetic field spectrum.Comment: We have corrected a normalisation error which was pointed out to us by Antony Lewis. It enhances our limits on the magnetic fields by (2\pi)^{3/4} ~

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020