152 research outputs found

    Visual estimation of ACL injury risk: Efficient assessment method, group differences, and expertise mechanisms

    Get PDF
    Simple observational assessment of movement quality (e.g., drop vertical jump biomechanics) is an efficient and low cost method for anterior cruciate ligament (ACL) injury screening and prevention. A recently developed test (see www.ACL-IQ.org) has revealed substantial cross-professional/group differences in visual ACL injury risk estimation skill. Specifically, parents, sport coaches, and to some degree sports medicine physicians, would likely benefit from training or the use of decision support tools. In addition, expertise mechanisms (perceptual-cognitive characteristics of skilled performers) were investigated in order to design training systems to improve risk estimation performance

    Evolutionary temperature compensation of carbon fixation in marine phytoplankton

    Get PDF
    The efficiency of carbon sequestration by the biological pump could decline in the coming decades because respiration tends to increase more with temperature than photosynthesis. Despite these differences in the short-term temperature sensitivities of photosynthesis and respiration, it remains unknown whether the long-term impacts of global warming on metabolic rates of phytoplankton can be modulated by evolutionary adaptation. We found that respiration was consistently more temperature dependent than photosynthesis across 18 diverse marine phytoplankton, resulting in universal declines in the rate of carbon fixation with short-term increases in temperature. Long-term experimental evolution under high temperature reversed the short-term stimulation of metabolic rates, resulting in increased rates of carbon fixation. Our findings suggest that thermal adaptation may therefore have an ameliorating impact on the efficiency of phytoplankton as primary mediators of the biological carbon pump

    The relationship of high-intensity cross-training with arterial stiffness

    Get PDF
    Background Central arterial stiffness is a cardiovascular risk factor that can be readily affected through engagement in physical exercise training, with resistance and aerobic exercise having disparate affects. Despite the growing popularity of high-intensity cross-training (HICT), little is currently known about the effects of this mixed modality exercise stimulus on arterial stiffness. Therefore, the purpose of this study was to characterize the arterial stiffness of habitual HICT participants vs. aerobically active and sedentary controls using a cross-sectional design. Methods A total of 30 participants were recruited: 10 middle-aged long-term participants of HICT (CrossFit) and 20 age, sex, and height matched controls (10 recreationally active, 10 sedentary). Central and peripheral pulse wave velocities were measured for the carotid-femoral and femoral-dorsalis pedis arterial segments. Aerobic fitness (maximal oxygen uptake, VO2max) was measured and typical exercise participation rates were self-reported for each group. Results HICT participants manifested central pulse wave velocity (PWV) (5.3 ± 1.0 m/s, mean ± SD) and VO2max (43 ± 6 mL/kg/min) values nearly identical to active controls. Both active groups had significantly better values than sedentary controls (7.1 ± 1.0 m/s, p ≤ 0.001; and 32 ± 7 mL/kg/min, p = 0.01). No differences were observed in peripheral PWV between groups. Conclusion Habitual participation in HICT exercise was not associated with increased central nor peripheral arterial stiffness. Long-term HICT participants presented with similar fitness and arterial stiffness as compared with participants who practiced traditional aerobic exercise. Compared to sedentary living, HICT may offer musculoskeletal and cardiovascular health benefits without negatively impacting arterial stiffness

    Does persistent snowpack inhibit degradation of fecal stress indicators?

    Get PDF
    Physiological stress in wildlife can be a useful indicator of a population’s response to environmental factors. By using non-invasive endocrinological techniques, such as fecal sampling, potential confounding factors associated with the stress of capture can be avoided. A potential drawback of fecal sampling, however, is degradation of samples which may produce aberrant measurements of fecal glucocorticoid metabolites. In vertebrates, glucocorticoids, such as corticosterone, become elevated in response to stress. We sought to gauge the reliability of measurement of fecal glucocorticoid metabolites from white-tailed deer (Odocoileus virginianus) fecal samples exposed to a temperate winter with substantial snow cover and cold temperatures for up to 90 days, by repeatedly subsampling fecal samples every 10 days and performing a corticosterone enzyme-linked immunosorbent assay (ELISA). Measurements of fecal glucocorticoid metabolites at 10 days were consistent with initial measurements, after which (20 days) they became aberrant following a period of thawing. Consequently, glucocorticoid metabolite levels in feces appear to remain stable under ambient conditions if temperatures remain below freezing at least for 10 days. While it’s possible that samples may remain useful beyond this time frame based on previous laboratory studies of samples stored in a freezer, further work is needed to determine how samples weather in situ under extreme cold (e.g. Arctic) or periods of partial thawing

    Post-Exercise Arterial Stiffness Responses Are Similar After Acute Eccentric and Concentric Arm Cycling

    Get PDF
    Upper-body resistance exercise effectively increases muscular strength, but may concomitantly increase arterial stiffness. Eccentric exercise can lead to muscle soreness and arterial stiffness in untrained participants. However, it is unclear if upper-body eccentric exercise could reduce arterial stiffness in a single session for participants that have undergone progressive training. Our purpose was to compare acute responses to upper-body eccentric (novel, ECCarm) and concentric (traditional, CONarm) steady state arm cycling. We hypothesized that arm arterial stiffness would be reduced after both ECCarm and CONarm. Twenty-two young healthy individuals performed either ECCarm ( = 11) or CONarm ( = 11) at ~70% of peak heart rate for 20 min after a training period. Heart rate, central pulse wave velocity (cPWV), and peripheral pulse wave velocity (pPWV; i.e., arm arterial stiffness) were assessed before, 10 min, and 30 min after exercise. Heart rate was not elevated at 10 min post ECCarm, but was elevated at 10- and 30-min post CONarm ( \u3c 0.01). After exercise, pPWV was decreased at 10 min post for both ECCarm (7.1 ± 0.3 vs. 6.5 ± 0.2 m/s) and CONarm (7.0 ± 0.2 vs. 6.5 ± 0.2 m/s; \u3c 0.05), while both groups returned to baseline values 30 min post. cPWV did not change in either group. Our results indicate that acute ECCarm provides a high-force, low energy cost form of resistance exercise that acutely reduces arm arterial stiffness. The reduction in pPWV and rapid heart rate recovery suggests that ECCarm is a safe form of exercise for overall and cardiovascular health

    Interactions of CO2 with Formation Waters, Oil and Minerals and CO2 storage at the Weyburn IEA EOR site, Saskatchewan, Canada

    Get PDF
    The Weyburn oil field in Saskatchewan, Canada, is hosted in Mississippian carbonates and has been subject to injection of CO2 since 2000. A detailed mineralogy study was completed as the basis for modeling of mineral storage of injected CO2. Combining the mineralogy with kinetic reaction path models and water chemistry allows estimates of mineral storage of CO2 over 50 years of injection. These results, combined with estimates of pore volume, solubility of CO2 in oil and saline formation waters, and the initial and final pore volume saturation with respect to oil, saline water and gas/supercritical fluid allow an estimate of CO2 stored in saline water, oil and minerals over 50 years of CO2 injection. Most injected CO2 is stored in oil (6.5•106 to 1.3•107 tonnes), followed closely by storage in supercritical CO2 (7.2•106 tonnes) with saline formation water (1.5 - 2•106 tonnes) and mineral storage (2 - 6•105 tonnes) being the smallest sinks. If the mineral dawsonite forms, as modeling suggests, the majority of CO2 dissolved in oil and salineformation water will be redistributed into minerals over a period of approximately 5000 years. The composition of produced fluids from a baseline sampling program, when compared to produced fluids taken three years after injection commenced, suggest that dawsonite is increasingly stable as pH decreases due to CO2 injection. The results suggest that hydrocarbon reservoirs that contain low gravity oil and little or no initial gas saturation prior to CO2 injection, may store the majority of injected CO2 solubilized in oil, making such reservoirs the preferred targets for combined enhanced oil recovery-CO2 storage projects

    CDC5 Inhibits the Hyperphosphorylation of the Checkpoint Kinase Rad53, Leading to Checkpoint Adaptation

    Get PDF
    The mechanistic role of the yeast kinase CDC5, in allowing cells to adapt to the presence of irreparable DNA damage and continue to divide, is revealed
    • …
    corecore