458 research outputs found

    Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels

    Get PDF
    Protected by extracellular polymers, microbes within biofilms are significantly more resistant to disinfectants. Current research has been instrumental in identifying nitric oxide donors and hydrogels as potential disinfectant additives. Nitric oxide (NO) donors are considered a very promising molecule as biofilm dispersal agents and hydrogels have recently attracted a lot of interest due to their biocompatible properties and ability to form stable thin films. When the NO donor MAHMA NONOate was dissolved in phosphate saline buffer, it was able to reduce the biomass of well-established biofilms up to 15% for at least 24 h of contact time. Encapsulation of MAHMA NONOate and molsidomine within a hydrogel composed of cellulose nanocrystals (CNC) has shown a synergistic effect in dispersing well-established biofilms: after 2 h of exposure, moderate but significant dispersion was measured. After 6 h of exposure, the number of cells transitioning from the biofilm to the planktonic state was up to 0.6 log higher when compared with non-treated biofilms. To further explore the transport processes of NO donors within hydrogels, we measured the nitric oxide flux from gels, at 25°C for a composite of 0.1 µM MAHMA NONOate–CNC. Nitric oxide diffuses up to 500 µm from the hydrogel surface, with flux decreasing according to Fick’s law. 60% of NO was released from the hydrogel composite during the first 23 min. These data suggest that the combined treatments with nitric oxide donor and hydrogels may allow for new sustainable cleaning strategies

    Exploitation of nitric oxide donors to control bacterial adhesion on ready‐to‐eat vegetables and dispersal of pathogenic biofilm from polypropylene

    Get PDF
    Background Nitric oxide (NO) donors have been used to control biofilm formation. NO can be delivered in situ using organic carriers and act as a signaling molecule. Cells exposed to NO shift from biofilm to the planktonic state and are better exposed to the action of disinfectants. In this study, we investigate the capability of the NO donors molsidomine, MAHAMA NONOate, NO‐aspirin and diethylamine NONOate to act as anti‐adhesion agents on ready‐to‐eat vegetables, as well as dispersants to a number of pathogenic biofilms on plastic. Results Our results showed that 10pM molsidomine reduced the attachment of Salmonella enterica sv Typhimurium 14 028 to pea shoots and coriander leaves of about 0.5 Log(CFU/leaf) when compared with untreated control. The association of 10 pM molsidomine with 0.006% H2O2 showed a synergistic effect, obtaining a significant reduction in cell collection on the surface of the vegetable of about 1 Log(CFU/leaf). Similar results were obtained for MAHMA NONOate. We also showed that the association of diethylamine NONOate at 10 mM and 10pM with the quaternary ammonium compound diquat bromide improves the effectiveness of biofilm dispersal by 50% when compared with the donor alone. Conclusions Our findings reveal the dual role of NO compounds in biofilm control. Molsidomine, MAHMA NONOate and diethylamine NONOate are good candidates in either preventing biofilm formation or dispersing biofilm, especially when used in conjunction with disinfectants. NO compounds have the potential to be developed into tool‐kit for pro‐active practices for GAPs, HACCP and Cleaning‐in‐place (CIP) protocols in industrial settings where washing is routinely applied. This article is protected by copyright. All rights reserved

    Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7

    Get PDF
    Biofilms in the industrial environment could be problematic. Encased in extracellular polymeric substances, pathogens within biofilms are significantly more resistant to chlorine and other disinfectants. Recent studies suggest that compounds capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of sessile bacteria and provide a foundation for novel approaches to controlling biofilms formed by some microorganisms. In this work, we compared the ability of five nitric oxide donors (molsidomine, MAHMA NONOate, diethylamine NONOate, diethylamine NONOate diethylammonium salt, spermine NONOate) to dislodge biofilms formed by non-typhoidal Salmonella enterica and pathogenic E. coli on plastic and stainless steel surfaces at different temperatures. All five nitric oxide donors induced significant (35-80%) dispersal of biofilms, however, the degree of dispersal and the optimal dispersal conditions varied. MAHMA NONOate and molsidomine were strong dispersants of the Salmonella biofilms formed on polystyrene. Importantly, molsidomine induced dispersal of up to 50% of the pre-formed Salmonella biofilm at 4 degrees C, suggesting that it could be effective even under refrigerated conditions. Biofilms formed by E. coli O157:H7 were also significantly dispersed. Nitric oxide donor molecules were highly active within 6 hours of application. To better understand mode of action of these compounds, we identified Salmonella genomic region recA-hydN, deletion of which led to an insensitivity to the nitric oxide donors

    Dispersal of human and plant pathogens biofilms via nitric oxide donors at 4°C

    Get PDF
    Recent studies suggest that nitric oxide donors capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of biofilms. Encased in extracellular polymeric substances, human and plant pathogens within biofilms are significantly more resistant to sanitizers. This is particularly a problem in refrigerated environments where food is processed. In an exercise aimed to study the potential of nitric oxide donors as biofilm dispersal in refrigerated conditions, we compared the ability of different nitric oxide donors (SNAP, NO-aspirin and Noc-5) to dislodge biofilms formed by foodborne, human and plant pathogens treated at 4 °C. The donors SNAP and Noc-5 were efficient in dispersing biofilms formed by Salmonella enterica, pathogenic Escherichia coli and Listeria innocua. The biomasses were decreased up to 30 % when compared with the untreated controls. When the plant pathogens Pectobacterium sp. and Xanthomonas sp. were tested the dispersion was mainly limited to Pectobacterium carotovorum biofilms, decreasing up to 15 % after exposure to molsidomine. Finally, the association of selected nitric oxide donors with sanitizers (DiQuat, H2O2, peracetic acid and PhenoTek II) was effective in dispersing biofilms. The best dispersal was achieved by pre-treating P. carotovorum with molsidomine and then peracetic acid. The synergistic effect was estimated up to ~35 % in dispersal when compared with peracetic acid alone. The association of nitric oxide donors with sanitizers could provide a foundation for an improved sanitization procedure for cleaning refrigerate environments

    Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3

    Get PDF
    The restricted bone marrow (BM) localisation of multiple myeloma (MM) cells most likely results from a specific homing influenced by chemotactic factors, combined with the proper signals for growth and survival provided by the BM microenvironment. In analogy to the migration and homing of normal lymphocytes, one can hypothesise that the BM homing of MM cells is mediated by a multistep process, involving the concerted action of adhesion molecules and chemokines. In this study, we report that primary MM cells and myeloma derived cell lines (Karpas, LP-1 and MM5.1) express the chemokine receptor CCR2. In addition, we found that the monocyte chemotactic proteins (MCPs) MCP-1, -2 and -3, three chemokines acting as prominent ligands for CCR2, are produced by stromal cells, cultured from normal and MM BM samples. Conditioned medium (CM) from BM stromal cells, as well as MCP-1, -2 and -3, act as chemoattractants for human MM cells. Moreover, a blocking antibody against CCR2, as well as a combination of neutralizing antibodies against MCP-1, -2 and -3, significantly reduced the migration of human MM cells to BM stromal cell CM. The results obtained in this study indicate the involvement of CCR2 and the MCPs in the BM homing of human MM cells. (C) 2003 Cancer Research UK

    Clinical predictors of long-term survival in newly diagnosed transplant eligible multiple myeloma - an IMWG Research Project

    Get PDF
    Purpose: multiple myeloma is considered an incurable hematologic cancer but a subset of patients can achieve long-term remissions and survival. The present study examines the clinical features of long-term survival as it correlates to depth of disease response. Patients & Methods: this was a multi-institutional, international, retrospective analysis of high-dose melphalan-autologous stem cell transplant (HDM-ASCT) eligible MM patients included in clinical trials. Clinical variable and survival data were collected from 7291 MM patients from Czech Republic, France, Germany, Italy, Korea, Spain, the Nordic Myeloma Study Group and the United States. Kaplan–Meier curves were used to assess progression-free survival (PFS) and overall survival (OS). Relative survival (RS) and statistical cure fractions (CF) were computed for all patients with available data. Results: achieving CR at 1 year was associated with superior PFS (median PFS 3.3 years vs. 2.6 years, p < 0.0001) as well as OS (median OS 8.5 years vs. 6.3 years, p < 0.0001). Clinical variables at diagnosis associated with 5-year survival and 10-year survival were compared with those associated with 2-year death. In multivariate analysis, age over 65 years (OR 1.87, p = 0.002), IgA Isotype (OR 1.53, p = 0.004), low albumin < 3.5 g/dL (OR = 1.36, p = 0.023), elevated beta 2 microglobulin ≥ 3.5 mg/dL (OR 1.86, p < 0.001), serum creatinine levels ≥ 2 mg/dL (OR 1.77, p = 0.005), hemoglobin levels < 10 g/dL (OR 1.55, p = 0.003), and platelet count < 150k/μL (OR 2.26, p < 0.001) appeared to be negatively associated with 10-year survival. The relative survival for the cohort was ~0.9, and the statistical cure fraction was 14.3%. Conclusions: these data identify CR as an important predictor of long-term survival for HDM-ASCT eligible MM patients. They also identify clinical variables reflective of higher disease burden as poor prognostic markers for long-term survival

    Paniya Voices: A Participatory Poverty and Health Assessment among a marginalized South Indian tribal population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In India, indigenous populations, known as <it>Adivasi </it>or Scheduled Tribes (STs), are among the poorest and most marginalized groups. 'Deprived' ST groups tend to display high levels of resignation and to lack the capacity to aspire; consequently their health perceptions often do not adequately correspond to their real health needs. Moreover, similar to indigenous populations elsewhere, STs often have little opportunity to voice perspectives framed within their own cultural worldviews. We undertook a study to gather policy-relevant data on the views, experiences, and priorities of a marginalized and previously enslaved tribal group in South India, the Paniyas, who have little 'voice' or power over their own situation.</p> <p>Methods/design</p> <p>We implemented a Participatory Poverty and Health Assessment (PPHA). We adopted guiding principles and an ethical code that promote respect for Paniya culture and values. The PPHA, informed by a vulnerability framework, addressed five key themes (health and illness, well-being, institutions, education, gender) using participatory approaches and qualitative methods. We implemented the PPHA in five Paniya colonies (clusters of houses in a small geographical area) in a <it>gram panchayat </it>(lowest level decentralized territorial unit) to generate data that can be quickly disseminated to decision-makers through interactive workshops and public forums.</p> <p>Preliminary findings</p> <p>Findings indicated that the Paniyas are caught in multiple 'vulnerability traps', that is, they view their situation as vicious cycles from which it is difficult to break free.</p> <p>Conclusion</p> <p>The PPHA is a potentially useful approach for global health researchers working with marginalized communities to implement research initiatives that will address those communities' health needs in an ethical and culturally appropriate manner.</p

    Hematopoietic stem cell mobilization with the reversible CXCR4 receptor inhibitor plerixafor (AMD3100)—Polish compassionate use experience

    Get PDF
    Recent developments in the field of targeted therapy have led to the discovery of a new drug, plerixafor, that is a specific inhibitor of the CXCR4 receptor. Plerixafor acts in concert with granulocyte colony-stimulating factor (G-CSF) to increase the number of stem cells circulating in the peripheral blood (PB). Therefore, it has been applied in the field of hematopoietic stem cell mobilization. We analyzed retrospectively data regarding stem cell mobilization with plerixafor in a cohort of 61 patients suffering from multiple myeloma (N = 23), non-Hodgkin’s lymphoma (N = 20), or Hodgkin’s lymphoma (N = 18). At least one previous mobilization attempt had failed in 83.6% of these patients, whereas 16.4% were predicted to be poor mobilizers. The median number of CD34+ cells in the PB after the first administration of plerixafor was 22/μL (range of 0–121). In total, 85.2% of the patients proceeded to cell collection, and a median of two (range of 0–4) aphereses were performed. A minimum of 2.0 × 106 CD34+ cells per kilogram of the patient’s body weight (cells/kg b.w.) was collected from 65.6% of patients, and the median number of cells collected was 2.67 × 106 CD34+ cells/kg b.w. (0–8.0). Of the patients, 55.7% had already undergone autologous stem cell transplantation, and the median time to neutrophil and platelet reconstitution was 12 and 14 days, respectively. Cases of late graft failure were not observed. We identified the diagnosis of non-Hodgkin’s lymphoma and previous radiotherapy as independent factors that contributed to failure of mobilization. The current report demonstrates the satisfactory efficacy of plerixafor plus G-CSF for stem cell mobilization in heavily pre-treated poor or predicted poor mobilizers

    Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis

    Get PDF
    Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF). Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model.). are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse
    corecore