5 research outputs found

    Remediation of acid mine drainage and immobilization of rare earth elements: Comparison between natural and residual alkaline materials

    Get PDF
    Acid mine drainage (AMD) is a well-known source of toxic trace metals in freshwaters. Traditional passive treatment systems rely on AMD neutralization with limestone and removal of most common toxic transition metals such as Cu and Zn with little attention to rare earth elements (REE). Alkaline waste materials now receive increasing attention as low cost AMD treatment alternatives in the circular economy. This study was set up to identify the efficiency of alkaline waste materials remediating AMD and scavenging REE in addition to other toxic trace elements. An AMD sample was collected from a lixiviate coming from pyrite heaps in the Iberian Pyrite Belt (pH =1.8, 30 μM ∑REY). The sample was treated with either blast furnace slag (BFS) generated during smelting of iron ore in a blast furnace or biomass ashes (BA) derived from combustion of biomass, thereby using analytical grade CaCO3, and NaOH as reference products. The batch alkalinization experiments were conducted by adding each alkaline material at an amount to obtain an equal pH to ≈6.5. The required amounts of the products were NaOH 99%) and the remaining REE concentrations in the solutions were clearly lower than values for Cu and Zn. The Zn and Cu removals were not consistently high enough (except with NaOH) to meet environmental limits in the discharge waters. The largest efficiency for REE removals was obtained with CaCO3. Indirect evidence here suggests that gypsum is a better host for the trivalent REE than Fe(III) minerals in the precipitates. The ionic radii of trivalent REE are more similar to Ca2+than to Fe3+, explaining the better potential of gypsum as REE host. This study showed also the potential of BFS as alkaline agent for the remediation of AMD in terms of its higher alkalinity generation potential as compared to BA, thus making BA less promising than BFSThis research has received funding from European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska- Curie Grant Agreement No 857989. C.R C´anovas thanks the Spanish Ministry of Science and Innovation for the Postdoctoral Fellowship granted under application reference RYC2019-027949-I. The authors gratefully acknowledge the valuable assistance of the following people as well: Dr. Raul Moreno Gonzalez from the Department of Earth Sciences, University of Huelva in Spain for assistance in collecting acid mine water samples; Dr. Quoc Tri Phung from SCK CEN in Belgium for assistance in obtaining BFS samples; Dr. Lander Frederickx from SCK CEN in Belgium for supporting in XRD analysis; Dr. Claudia Moens, Mr. Benoit Bergen and Ms. Kristin Coorevits, ICP-MS Team, Division of Soil and Water management, KU Leuven for their enormous assistance in measuring ICP-MS samples; All the technicians of the Waste and Disposal Group, SCKCEN for their assistance in various ways. Authors also thank ENCE Energía y Celulosa Company for providing the B

    Interactions et transfert de macromolécules organiques et de colloïdes dans l'argile nanoporeuse du Callovo-Oxfordien

    No full text
    La roche argileuse du Callovo-Oxfordien, peu perméable, est envisagée comme roche hôte d un stockage de longue durée des déchets nucléaires. Les radionucléides présentent une mobilité très faible au sein de cette roche mais leur complexation avec des espèces colloïdales ou des macromolécules organiques, naturellement présentes dans l eau de pore ou induites par le stockage, pourraient être un vecteur de leur transport. Afin de comprendre dans quelles mesures ces espèces colloïdales et organiques sont mobiles dans l argilite, si elles interagissent chimiquement et/ou physiquement (filtration) avec la roche, des expériences d adsorption en milieu dispersé et de transport en roche intacte (expériences de percolation), ont été menées sur des colloïdes de Se(0) et des acides organiques : acide succinique (118Da), acide citrique (192Da) et acide polymaléique (1900Da). Les études d adsorption sur les colloïdes de Se(0) mettent en évidence la rétention de cette espèce sur la roche, ses propriétés étant écrantées par la présence nécessaire de protéine pour stabiliser la suspension. Les études d adsorption sur les acides organiques montrent une rétention de ces espèces (entre 2,2.10-3 et 4,20.10-2 mol/kg de roche), fortement irréversible et dépendante de la teneur en solution en ion Ca2+ et des propriétés de complexation des acides organiques avec cet ion. Les expériences de percolation sur les acides succinique et polymaléique mettent en évidence la mobilité de ces espèces au sein de la roche intacte. Ces molécules sont soumises à des interactions similaires à celles identifiées en milieu dispersé et ne subissent aucune filtration par le réseau poral de la rocheLow permeability Callovo-Oxfordian clay rock is under consideration as a possible host rock for long-term disposal of radioactive waste in a deep geological repository. Radionuclides move slowly in the Callovo-Oxfordian rock but complexation with colloidal species or organic macromolecules, naturally present in the pore solution or generated by storage, may enhance their migration. These colloidal and organic species can be retained by the clay through chemical interactions or physical immobilization (filtration). To increase the understanding of their mobility, batch and transport experiments (percolation) were performed on crushed and whole rock samples using Se(0) colloids and the following organic acids: succinic acid (118Da), citric acid (192Da) and polymaleic acid (1900Da). Adsorption studies on Se(0) colloids show the retention of this species on the clay. However, the properties of these colloids are masked by the presence of the protein required for the stabilization of the suspension. Adsorption studies on organic acids highlight the retention of these species (between 2.2.10-3 and 4.20.10-2 mol/kg of rock) which is strongly irreversible and which depends on the Ca2+ ion concentrations in solution and on the capacity of organic acids to complex with this ion. Percolation experiments performed on succinic and polymaleic acids show that despite their size, these molecules are mobile in the pore water of the compact rock. Filtration was not observed. Interactions rock/organic molecule were similar to those identified on a crushed rockNANTES-BU Sciences (441092104) / SudocSudocFranceF

    Sn(IV) Sorption onto Illite and Boom Clay: Effect of Carbonate and Dissolved Organic Matter

    No full text
    126Sn is a long-lived fission product and it is important to assess its sorption onto the host rocks surrounding a possible nuclear waste repository. Boom Clay (BC) is under investigation in Belgium as a potential host rock. To better understand Sn(IV) sorption onto the clay minerals constituting BC, sorption of Sn(IV) was here investigated on Illite du Puy (IdP), from pH 3 to 12. Sorption isotherms at pH ~8.4 were acquired in the presence and absence of carbonate, and in the presence and absence of BC dissolved organic matter (DOM). Sn(IV) strongly sorbed on IdP over the full range of the pHs and concentrations investigated. In the presence of carbonates, Sn(IV) sorption was slightly decreased, highlighting the Sn(IV)–carbonate complexation. DOM reduced the Sn(IV) sorption, confirming the strong complexation of Sn(IV) with DOM. The results were modelled with the 2-site protolysis non-electrostatic surface complexation model. The surface complexation constants and aqueous complexation constants with carbonate and DOM were optimized to describe the experimental data. The applicability of the component additivity approach (CAA) was also tested to describe the experimental Sn(IV) sorption isotherm acquired on BC in BC pore water. The CAA did not allow accurate prediction of Sn(IV) sorption on BC, highlighting the high sensitivity of the model to the Sn(IV)-DOM complexation

    Sn(IV) Sorption onto Illite and Boom Clay: Effect of Carbonate and Dissolved Organic Matter

    No full text
    126Sn is a long-lived fission product and it is important to assess its sorption onto the host rocks surrounding a possible nuclear waste repository. Boom Clay (BC) is under investigation in Belgium as a potential host rock. To better understand Sn(IV) sorption onto the clay minerals constituting BC, sorption of Sn(IV) was here investigated on Illite du Puy (IdP), from pH 3 to 12. Sorption isotherms at pH ~8.4 were acquired in the presence and absence of carbonate, and in the presence and absence of BC dissolved organic matter (DOM). Sn(IV) strongly sorbed on IdP over the full range of the pHs and concentrations investigated. In the presence of carbonates, Sn(IV) sorption was slightly decreased, highlighting the Sn(IV)–carbonate complexation. DOM reduced the Sn(IV) sorption, confirming the strong complexation of Sn(IV) with DOM. The results were modelled with the 2-site protolysis non-electrostatic surface complexation model. The surface complexation constants and aqueous complexation constants with carbonate and DOM were optimized to describe the experimental data. The applicability of the component additivity approach (CAA) was also tested to describe the experimental Sn(IV) sorption isotherm acquired on BC in BC pore water. The CAA did not allow accurate prediction of Sn(IV) sorption on BC, highlighting the high sensitivity of the model to the Sn(IV)-DOM complexation
    corecore